

## Mock (!) Exam

# Empirical Research in Management and Economics (WI000258)

### General information:

- Format: For each questions there are 4 possible answer options, and **only one option** is correct.
- This mock exam has 35 questions (**note: the real exam will have 55 questions!**).
- **NOTE: In the real exam, only answers entered on the answer sheet (last page) will be graded.**
- Closely follow the instructions regarding the answer sheet given at the end of this document.
- For the real exam, you must use a document-proof pen and are only permitted to use a nonprogrammable pocket calculator. For notes, you can only use blank paper provided by the examiners. You can request additional blank papers.
- During the real exam, any aids containing course content or enabling access to such materials are not permitted (scripts, lecture notes, smartphones, etc.) and must be kept out of reach and sight.
- Please enter your **name** and your **matriculation number** here **and on the answer sheet** (starting with a zero, e.g., 01234567):

**Name:** \_\_\_\_\_

**Matriculation number:** \_\_\_\_\_

**Good luck!** ☺

### **Information regarding the answer sheet (final page)**

- Enter your name and signature.
- Enter your student (matriculation) number using the bubble format. Columns designate the digit at the respective position. Fill in the bubble that corresponds to the digit at that position (e.g., the left-most column is the first digit of your student number, hence 0 is pre-filled.)
- Enter your answer for each question using the bubble format. Fill in the bubble that corresponds to your final answer.
- Closely follow the instructions from to the example.
  - Completely fill the box that indicates your final answer (no crosses, etc.) to ensure that the answer is registered.
  - You receive 0 points if an incorrect box is checked, no box is checked, or more than one box is checked.
  - To correct an answer, also fill in the correct bubble and draw a little arrow (or something to the effect) to indicate which bubble should count as an answer.

### Example:

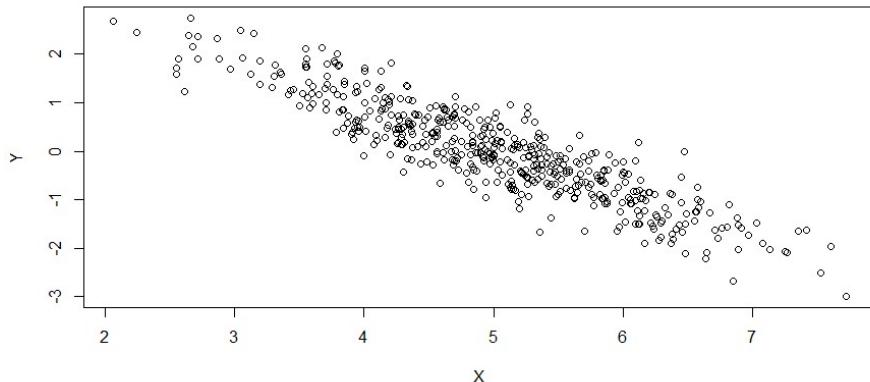
Marking:       A  B  C  D

Improper:       A  B  C  D

Correction:       A  B  C  D

|   |                                                                                                                     |                      |
|---|---------------------------------------------------------------------------------------------------------------------|----------------------|
| 1 | <b>Which of the following statements is false?</b>                                                                  | Answer<br>(2 points) |
| a | In a left-skewed distribution the bigger part of the data is typically located to the right of the arithmetic mean. |                      |
| b | In a left-skewed distribution the arithmetic mean is typically smaller than the mode.                               |                      |
| c | In a symmetric distribution the arithmetic mean coincides with the median and mode.                                 |                      |
| d | In a left-skewed distribution the bigger part of the data is typically located to the left of the arithmetic mean.  |                      |

| 2           | <b>You collect data on the number of hamburgers sold and the price of hamburgers in 9 different diners between 6pm and 7pm on a Monday evening.</b> <table border="1"> <thead> <tr> <th>Diner index</th><th>Number of hamburgers sold</th><th>Hamburger price [€]</th></tr> </thead> <tbody> <tr><td>1</td><td>10</td><td>3.00</td></tr> <tr><td>2</td><td>11</td><td>3.50</td></tr> <tr><td>3</td><td>11</td><td>2.90</td></tr> <tr><td>4</td><td>15</td><td>2.40</td></tr> <tr><td>5</td><td>16</td><td>3.10</td></tr> <tr><td>6</td><td>18</td><td>2.80</td></tr> <tr><td>7</td><td>19</td><td>3.30</td></tr> <tr><td>8</td><td>21</td><td>2.20</td></tr> <tr><td>9</td><td>23</td><td>1.90</td></tr> </tbody> </table> <p><b>What is the median price of sold hamburgers [€]?</b></p> | Diner index         | Number of hamburgers sold | Hamburger price [€] | 1 | 10 | 3.00 | 2 | 11 | 3.50 | 3 | 11 | 2.90 | 4 | 15 | 2.40 | 5 | 16 | 3.10 | 6 | 18 | 2.80 | 7 | 19 | 3.30 | 8 | 21 | 2.20 | 9 | 23 | 1.90 | Answer<br>(2 points) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|---------------------|---|----|------|---|----|------|---|----|------|---|----|------|---|----|------|---|----|------|---|----|------|---|----|------|---|----|------|----------------------|
| Diner index | Number of hamburgers sold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hamburger price [€] |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 1           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.00                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 2           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.50                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 3           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.90                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 4           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.40                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 5           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.10                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 6           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.80                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 7           | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.30                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 8           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.20                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| 9           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.90                |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| a           | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| b           | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| c           | 2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |
| d           | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                           |                     |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |   |    |      |                      |

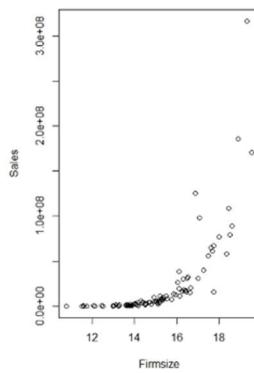

| 3                                                                                                                                        | <p>You collect a sample of the maximum temperatures in Munich for one week.</p> <table border="1"> <thead> <tr> <th>Day</th><th>MO</th><th>TU</th><th>WE</th><th>TH</th><th>FR</th><th>SA</th><th>SU</th></tr> </thead> <tbody> <tr> <td>Temperature in °C</td><td>23.2</td><td>27</td><td>23</td><td>30</td><td>28</td><td>20</td><td>21</td></tr> </tbody> </table> | Day | MO | TU | WE | TH | FR | SA | SU | Temperature in °C | 23.2 | 27 | 23 | 30 | 28 | 20 | 21 | Answer<br>(2 points) |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|----|----|----|----|----|-------------------|------|----|----|----|----|----|----|----------------------|
| Day                                                                                                                                      | MO                                                                                                                                                                                                                                                                                                                                                                    | TU  | WE | TH | FR | SA | SU |    |    |                   |      |    |    |    |    |    |    |                      |
| Temperature in °C                                                                                                                        | 23.2                                                                                                                                                                                                                                                                                                                                                                  | 27  | 23 | 30 | 28 | 20 | 21 |    |    |                   |      |    |    |    |    |    |    |                      |
| <p>Please calculate the arithmetic mean temperature and the respective standard deviation (SD) of the week. Tick the correct answer.</p> |                                                                                                                                                                                                                                                                                                                                                                       |     |    |    |    |    |    |    |    |                   |      |    |    |    |    |    |    |                      |
| a                                                                                                                                        | Mean: 25.3 SD: 14.2                                                                                                                                                                                                                                                                                                                                                   |     |    |    |    |    |    |    |    |                   |      |    |    |    |    |    |    |                      |
| b                                                                                                                                        | Mean: 23.2 SD: 3.5                                                                                                                                                                                                                                                                                                                                                    |     |    |    |    |    |    |    |    |                   |      |    |    |    |    |    |    |                      |
| c                                                                                                                                        | Mean: 24.6 SD: 3.8                                                                                                                                                                                                                                                                                                                                                    |     |    |    |    |    |    |    |    |                   |      |    |    |    |    |    |    |                      |
| d                                                                                                                                        | Mean: 24.6 SD: 14.2                                                                                                                                                                                                                                                                                                                                                   |     |    |    |    |    |    |    |    |                   |      |    |    |    |    |    |    |                      |

|   |                                                                                                                                     |                      |
|---|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 5 | Which of the following statements regarding scientific hypotheses is correct? If all statements (a)-(c) are false, please tick (d). | Answer<br>(2 points) |
| a | They must be falsifiable.                                                                                                           |                      |
| b | They must be verifiable.                                                                                                            |                      |
| c | They should refer to an individual situation or event.                                                                              |                      |
| d | All statements (a)-(c) are false.                                                                                                   |                      |

|   |                                                                                                                                                                 |                      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 6 | Which of the following statements regarding different types of correlation coefficients is correct? If all three statements (a)-(c) are false, please tick (d). | Answer<br>(2 points) |
| a | In the presence of outliers in the data it is preferable to use the Spearman rank correlation.                                                                  |                      |
| b | The Spearman rank correlation coefficient should always be used if your data is on a metric level of measurement.                                               |                      |
| c | While the Pearson correlation allows one to test for causality between variables, this is not possible with the Spearman rank correlation.                      |                      |
| d | All statements (a)-(c) are false.                                                                                                                               |                      |

**Look at the scatter plot below displaying Y against X. What statement regarding the relationship between Y and X is correct? If all of the three statements (a)-(c) are false, please tick (d).**

**7**




**Answer  
(2 points)**

- a** There is likely no correlation between the two variables.
- b** Y and X have a strong negative correlation. Therefore, the Pearson correlation coefficient between the two variables is likely to be  $< -1$
- c** The Pearson correlation coefficient between the two variables is likely positive
- d** All statements (a)-(c) are false.

**Look at the scatter plot below displaying Sales [€] against Firmsize [Million €]. Which statement regarding the relationship between Sales and Firmsize is correct? If all of the three statements (a)-(c) are false, tick (d).**

**8**



**Answer  
(2 points)**

- a** There is likely no correlation between the two variables.
- b** The Pearson correlation coefficient between the two variables is likely negative.
- c** The Pearson correlation coefficient between the two variables is likely positive.

|   |                                   |  |
|---|-----------------------------------|--|
| d | All statements (a)-(c) are false. |  |
|---|-----------------------------------|--|

|   |                                                                                                                                                                          |                   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 9 | <b>Which of the following statements regarding a dependent-samples t-test (two-sided) is correct? If all of the three statements (a)-(c) are false, please tick (d).</b> | Answer (2 points) |
| a | If the critical t-value is larger than the absolute value of the empirically observed value of the test statistic, you will reject the null hypothesis.                  |                   |
| b | If the absolute value of the empirically observed test statistic is larger than the critical t-value, you will reject the null hypothesis.                               |                   |
| c | If the test statistic is larger than zero, you will always reject the null hypothesis.                                                                                   |                   |
| d | All statements (a)-(c) are false.                                                                                                                                        |                   |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 10 | <b>You work for a car manufacturer and want to reevaluate the nitrogen oxide emissions of your Diesel cars. For that purpose, you measure the emissions of 500 cars. The mean of the nitrogen oxide emissions in this sample is 157 mg/km with a variance of 25 (mg/km)<sup>2</sup>. The goal is to achieve emissions of 150 mg/km. You decide to conduct a t-test to check whether the emissions in your sample are significantly different from your reference value (<math>\mu</math>).</b><br><br><b>What is the empirically observed value of the test statistic? (Note: <math>t = \frac{\bar{X}-\mu}{s/\sqrt{n}}</math>)</b> | Answer (2 points) |
| a  | 31.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| b  | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| c  | 6.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| d  | 702.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |

|    |                                                                                                                                                                                                                                                                           |                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 11 | <b>You estimate two regression models. The ratio of the explained sum of squares over the total sum of squares is smaller for the first than for the second model. Which statement regarding the relationship of the <math>R^2</math>'s of the two models is correct?</b> | Answer (2 points) |
| a  | The $R^2$ 's of the two models are identical.                                                                                                                                                                                                                             |                   |
| b  | We cannot make any statement on the relationship of the $R^2$ 's based on the given information.                                                                                                                                                                          |                   |

|   |                                                                        |  |
|---|------------------------------------------------------------------------|--|
| c | The $R^2$ of the second model is larger than that of the first model.  |  |
| d | The $R^2$ of the second model is smaller than that of the first model. |  |

|    |                                                                                                                                                                    |                   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 12 | <b>You create a variable Y from a variable X by calculating <math>Y = 0.5 \cdot X</math>. What statement regarding the correlation between X and Y is correct?</b> | Answer (2 points) |
| a  | The Pearson correlation coefficient will be equal to 0.5.                                                                                                          |                   |
| b  | The Pearson correlation coefficient will be equal to -1.                                                                                                           |                   |
| c  | The Spearman rank correlation coefficient will be equal to the Pearson correlation coefficient.                                                                    |                   |
| d  | The Spearman rank correlation should be used since this relationship is not linear.                                                                                |                   |

|    |                                                                                                                                                                                                    |                   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 13 | <b>If <math>T</math> is a test statistic and <math>t_{\text{obs}}</math> is the empirically observed value of the test statistic, then the p-value for the latter can be expressed as follows:</b> | Answer (2 points) |
| a  | $P(T \geq 0)$                                                                                                                                                                                      |                   |
| b  | $P(H_0)$                                                                                                                                                                                           |                   |
| c  | $P(T \geq t_{\text{obs}} \mid H_0)$                                                                                                                                                                |                   |
| d  | $P(T \geq t_{\text{obs}} \mid H_1)$                                                                                                                                                                |                   |

|    |                                                                                                                                                                                                            |                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 14 | <b>Suppose a population can be divided into 3 subgroups, which differ substantially in the relevant characteristics and their group size. What will happen if a stratified random sample is collected?</b> | Answer (2 points) |
| a  | Not all members of the population are equally likely to be sampled.                                                                                                                                        |                   |
| b  | All members of only one subgroup will be sampled.                                                                                                                                                          |                   |
| c  | All subgroups will be equally represented in the sample.                                                                                                                                                   |                   |
| d  | All members within a subgroup are equally likely to be sampled.                                                                                                                                            |                   |

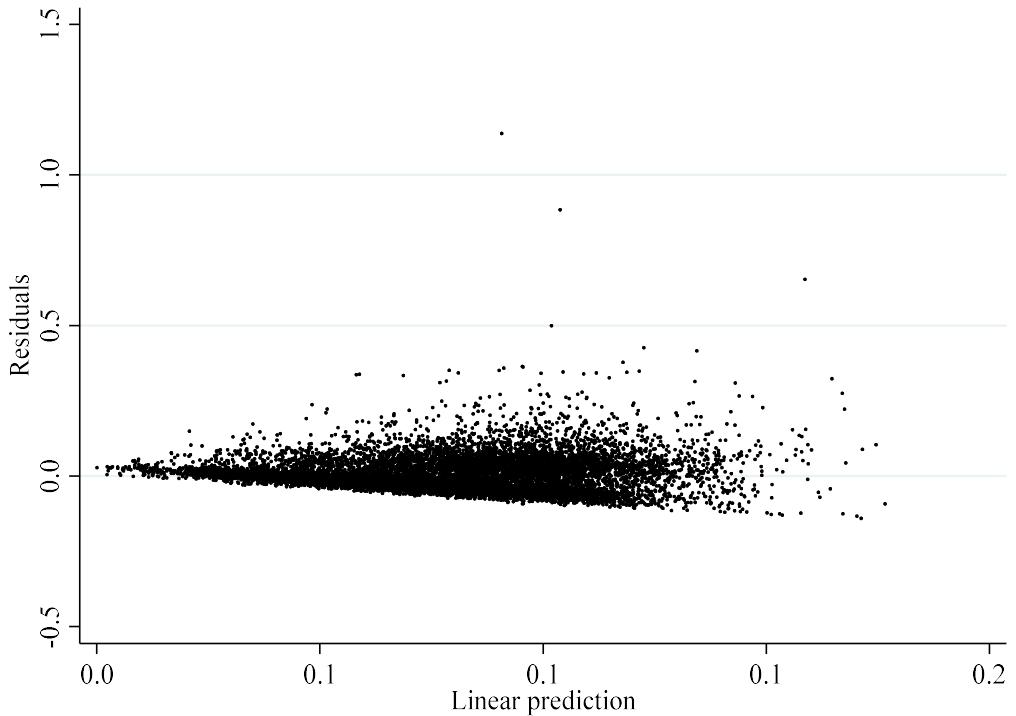
|    |                                                                                                                           |                   |
|----|---------------------------------------------------------------------------------------------------------------------------|-------------------|
| 15 | <b>In a regression model with only one independent variable an <math>R^2</math> value close to one indicates that ...</b> | Answer (2 points) |
| a  | ... the explained sum of squares exceeds the total sum of squares.                                                        |                   |
| b  | ... there is an almost perfect fit and the observed data points are close to the estimated regression line.               |                   |
| c  | ... the share of the variation in the dependent variable that is explained by the independent variable is very low.       |                   |
| d  | ... the sum of squares of the residuals is larger than the explained sum of squares.                                      |                   |

| 16       | <p><b>In a multiple linear regression model variables <math>x_1</math> and <math>x_2</math> are used to predict the variable <math>y</math>. You obtain the following descriptive statistics, correlations, and regression outputs. What is the standardized regression weight for <math>x_2</math>?</b></p> <p>Descriptives</p> <table border="1"> <thead> <tr> <th></th><th>N</th><th>Mean</th><th>SD</th><th>SE</th></tr> </thead> <tbody> <tr> <td>y</td><td>100</td><td>1762.647</td><td>278.665</td><td>27.867</td></tr> <tr> <td>x1</td><td>100</td><td>999.382</td><td>74.230</td><td>7.423</td></tr> <tr> <td>x2</td><td>100</td><td>99.754</td><td>30.577</td><td>3.058</td></tr> </tbody> </table> <p>Pearson's Correlations</p> <table border="1"> <thead> <tr> <th>Variable</th><th>x1</th><th>x2</th><th>y</th></tr> </thead> <tbody> <tr> <td>1. x1</td><td>Pearson's r<br/>—</td><td>—</td><td>—</td></tr> <tr> <td></td><td>p-value<br/>—</td><td>—</td><td>—</td></tr> <tr> <td>2. x2</td><td>Pearson's r<br/>0.129</td><td>—</td><td>—</td></tr> <tr> <td></td><td>p-value<br/>0.202</td><td>—</td><td>—</td></tr> <tr> <td>3. y</td><td>Pearson's r<br/>0.556</td><td>-0.736</td><td>—</td></tr> <tr> <td></td><td>p-value<br/>&lt; .001</td><td>&lt; .001</td><td>—</td></tr> </tbody> </table> <p>Coefficients</p> <table border="1"> <thead> <tr> <th>Model</th><th></th><th>Unstandardized</th><th>Standard Error</th><th>Standardized</th><th>t</th><th>p</th></tr> </thead> <tbody> <tr> <td><math>H_0</math></td><td>(Intercept)</td><td>1762.647</td><td>27.867</td><td>—</td><td>63.253</td><td>&lt; .001</td></tr> <tr> <td><math>H_1</math></td><td>(Intercept)</td><td>26.813</td><td>63.185</td><td>—</td><td>0.424</td><td>0.672</td></tr> <tr> <td></td><td>x1</td><td>2.484</td><td>0.063</td><td>0.123</td><td>39.327</td><td>&lt; .001</td></tr> <tr> <td></td><td>x2</td><td>-7.488</td><td>0.153</td><td>0.123</td><td>-48.827</td><td>&lt; .001</td></tr> </tbody> </table> |                | N              | Mean         | SD      | SE     | y | 100 | 1762.647 | 278.665 | 27.867 | x1 | 100 | 999.382 | 74.230 | 7.423 | x2 | 100 | 99.754 | 30.577 | 3.058 | Variable | x1 | x2 | y | 1. x1 | Pearson's r<br>— | — | — |  | p-value<br>— | — | — | 2. x2 | Pearson's r<br>0.129 | — | — |  | p-value<br>0.202 | — | — | 3. y | Pearson's r<br>0.556 | -0.736 | — |  | p-value<br>< .001 | < .001 | — | Model |  | Unstandardized | Standard Error | Standardized | t | p | $H_0$ | (Intercept) | 1762.647 | 27.867 | — | 63.253 | < .001 | $H_1$ | (Intercept) | 26.813 | 63.185 | — | 0.424 | 0.672 |  | x1 | 2.484 | 0.063 | 0.123 | 39.327 | < .001 |  | x2 | -7.488 | 0.153 | 0.123 | -48.827 | < .001 | Answer (2 points) |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------|---------|--------|---|-----|----------|---------|--------|----|-----|---------|--------|-------|----|-----|--------|--------|-------|----------|----|----|---|-------|------------------|---|---|--|--------------|---|---|-------|----------------------|---|---|--|------------------|---|---|------|----------------------|--------|---|--|-------------------|--------|---|-------|--|----------------|----------------|--------------|---|---|-------|-------------|----------|--------|---|--------|--------|-------|-------------|--------|--------|---|-------|-------|--|----|-------|-------|-------|--------|--------|--|----|--------|-------|-------|---------|--------|-------------------|
|          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean           | SD             | SE           |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| y        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1762.647       | 278.665        | 27.867       |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| x1       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 999.382        | 74.230         | 7.423        |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| x2       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.754         | 30.577         | 3.058        |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| Variable | x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x2             | y              |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| 1. x1    | Pearson's r<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —              | —              |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
|          | p-value<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —              | —              |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| 2. x2    | Pearson's r<br>0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | —              | —              |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
|          | p-value<br>0.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —              | —              |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| 3. y     | Pearson's r<br>0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.736         | —              |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
|          | p-value<br>< .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < .001         | —              |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| Model    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unstandardized | Standard Error | Standardized | t       | p      |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| $H_0$    | (Intercept)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1762.647       | 27.867         | —            | 63.253  | < .001 |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| $H_1$    | (Intercept)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.813         | 63.185         | —            | 0.424   | 0.672  |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
|          | x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.484          | 0.063          | 0.123        | 39.327  | < .001 |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
|          | x2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -7.488         | 0.153          | 0.123        | -48.827 | < .001 |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| 1        | -0.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| 2        | -0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| 3        | -0.736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |
| 4        | -0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |              |         |        |   |     |          |         |        |    |     |         |        |       |    |     |        |        |       |          |    |    |   |       |                  |   |   |  |              |   |   |       |                      |   |   |  |                  |   |   |      |                      |        |   |  |                   |        |   |       |  |                |                |              |   |   |       |             |          |        |   |        |        |       |             |        |        |   |       |       |  |    |       |       |       |        |        |  |    |        |       |       |         |        |                   |

|    |                                                                                                                                     |                   |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 17 | <b>What is a typical consequence of decreasing the significance level (lower <math>\alpha</math>) for a given statistical test?</b> | Answer (2 points) |
| a  | An increase in the probability of a Type I error (false positive).                                                                  |                   |
| b  | A decrease in the probability of a Type II error (false negative).                                                                  |                   |
| c  | A decrease in statistical power.                                                                                                    |                   |
| d  | An increase in effect size.                                                                                                         |                   |

|    |                                                                                                                                                                                                                                                               |                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 18 | <p><b>Which of the following statements regarding the figure below is correct (dots represent observed values)? If all statements (a)-(c) are correct, please tick (d).</b></p> <p>Y</p> <p>Regression line</p> <p><math>\bar{Y}</math></p> <p>W</p> <p>X</p> | Answer (2 points) |
| a  | The majority of the predicted values is larger than the observed values for the dependent variable.                                                                                                                                                           |                   |
| b  | For $x = 3$ , the predicted value of the regression model exceeds the mean ( $\bar{Y}$ )                                                                                                                                                                      |                   |
| c  | The distance W between the mean ( $\bar{Y}$ ) and the regression line indicates a deviation of Y from its mean that is explained by the model.                                                                                                                |                   |
| d  | All statements (a)-(c) are correct.                                                                                                                                                                                                                           |                   |

|           |                                                                                                                                                 |                      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>19</b> | <b>Which statement concerning heteroscedasticity in regression analysis is correct? If all statements (a)-(c) are correct, please tick (d).</b> | Answer<br>(2 points) |
| a         | Heteroscedasticity implies that the t-test of regression coefficients becomes more reliable.                                                    |                      |
| b         | Homoscedasticity distorts the standard errors of regression coefficients.                                                                       |                      |
| c         | Heteroscedasticity means that the variance of the error term is not constant across observations.                                               |                      |
| d         | All statements (a)-(c) are correct.                                                                                                             |                      |


|           |                                                                                                    |                      |
|-----------|----------------------------------------------------------------------------------------------------|----------------------|
| <b>20</b> | <b>What is the purpose of calculating standardized regression coefficients?</b>                    | Answer<br>(2 points) |
| a         | To reduce heteroscedasticity.                                                                      |                      |
| b         | To be able to translate the regression results for a factor analysis.                              |                      |
| c         | To compare the importance of different independent variables in predicting the dependent variable. |                      |
| d         | To evaluate the standard errors of the regression coefficients.                                    |                      |

|           |                                                                                   |                      |
|-----------|-----------------------------------------------------------------------------------|----------------------|
| <b>21</b> | <b>If your regression model is affected by heteroscedasticity, you should ...</b> | Answer<br>(2 points) |
| a         | ... use robust standard errors.                                                   |                      |
| b         | ... center the dependent variable.                                                |                      |
| c         | ... transform the error term with ungeneralized least squares.                    |                      |
| d         | ... use unweighted least squares for estimation.                                  |                      |

|           |                                                                                                           |                      |
|-----------|-----------------------------------------------------------------------------------------------------------|----------------------|
| <b>22</b> | <b>Which of the following indices for model evaluation takes the number of observations into account?</b> | Answer<br>(2 points) |
| a         | $R^2$                                                                                                     |                      |
| b         | BIC                                                                                                       |                      |
| c         | AIC                                                                                                       |                      |
| d         | $\chi^2$                                                                                                  |                      |

**Based on the figure below, which plots OLS residuals against the predicted values of a regression model, which of the following statements concerning the model can be made?**

**23**



Answer  
(2 points)

- a The assumption of homoscedasticity is likely fulfilled.
- b The relationship between the dependent variable and the predictor(s) is strongly non-linear.
- c The residuals follow a normal distribution.
- d The model suffers from heteroscedasticity.

**24 In a multiple regression analysis with three predictors (let's call them income, hsgpa, and sch2), assume that the VIFs are 1.187828, 1.187706, 1.000857 for income, hsgpa, and sch2, respectively. Based on these results, is multicollinearity a problem?**

Answer  
(2 points)

- a Yes, as for all variables the VIFs are clearly larger than zero.
- b Yes, as for income, hsgpa and sch2 the VIFs are smaller than 10.
- c No, as the VIFs are all close to 1.
- d Yes, as all VIFs exceed the critical threshold of 1.

|    |                                                                                                                                                                                                                                                                                                               |                      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 25 | <p>In the context of a logistic regression model, where <math>p_k(y=1) = \frac{1}{1+e^{-z_k}}</math> and <math>z_k = b_0 + \sum_{j=1}^J b_j x_{jk}</math> (and assuming all <math>b_j &gt; 0</math>), which of the following statements is correct? If all statements (a)-(c) are false, please tick (d).</p> | Answer<br>(2 points) |
| a  | If all xs decrease simultaneously, the probability of $y = 1$ increases.                                                                                                                                                                                                                                      |                      |
| b  | For $z_k = 0$ , the probability of $y = 1$ is smaller than for $z_k < 0$ .                                                                                                                                                                                                                                    |                      |
| c  | If all independent variables are zero, the probability of $y = 1$ is 0.5.                                                                                                                                                                                                                                     |                      |
| d  | All statements (a)-(c) are false.                                                                                                                                                                                                                                                                             |                      |

|    |                                                                                                                                                                                                                                                                                                                                                                            |                      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 26 | <p>In a logistic regression model predicting whether individual passengers on the Titanic survived the disaster based on the person's age and sex (1 = male, 0 = female), the following regression coefficients were estimated: <math>b_0 = 1.306</math>, <math>b_{age} = -0.006</math>, <math>b_{sex} = -2.466</math>. What are the odds ratios (OR) for age and sex?</p> | Answer<br>(2 points) |
| a  | $OR_{age} = .006, OR_{sex} = 2.466$                                                                                                                                                                                                                                                                                                                                        |                      |
| b  | $OR_{age} = .986, OR_{sex} = 0.003$                                                                                                                                                                                                                                                                                                                                        |                      |
| c  | $OR_{age} = .994, OR_{sex} = 0.085$                                                                                                                                                                                                                                                                                                                                        |                      |
| d  | $OR_{age} = -.006, OR_{sex} = -2.466$                                                                                                                                                                                                                                                                                                                                      |                      |

| 27          | <p>Your company wants to increase the percentage of website visitors who buy a product (online conversion rate). To understand the variables that influence the online conversion rate, you collected data about whether a visitor has purchased a product (Y), and three other variables X1-X3 that you suspect might influence the probability of purchase. Based on the results of a logistic regression analysis shown below, what are the odds of purchase vs. no purchase when <math>X1 = X2 = X3 = 1</math>?</p> <p>Coefficients ▼</p> <table border="1"> <thead> <tr> <th rowspan="2"></th><th rowspan="2">Estimate</th><th rowspan="2">Standard Error</th><th rowspan="2">z</th><th colspan="3">Wald Test</th></tr> <tr> <th>Wald Statistic</th><th>df</th><th>p</th></tr> </thead> <tbody> <tr> <td>(Intercept)</td><td>0.873</td><td>0.123</td><td>7.106</td><td>50.494</td><td>1</td><td>&lt; .001</td></tr> <tr> <td>X1</td><td>1.984</td><td>0.139</td><td>14.233</td><td>202.592</td><td>1</td><td>&lt; .001</td></tr> <tr> <td>X2</td><td>-0.700</td><td>0.101</td><td>-6.903</td><td>47.657</td><td>1</td><td>&lt; .001</td></tr> <tr> <td>X3</td><td>1.619</td><td>0.200</td><td>8.088</td><td>65.414</td><td>1</td><td>&lt; .001</td></tr> </tbody> </table> <p>Note. Y level 'Purchase' coded as class 1.</p> |                | Estimate | Standard Error | z | Wald Test      |   |           | Wald Statistic | df | p | (Intercept) | 0.873 | 0.123 | 7.106 | 50.494 | 1 | < .001 | X1 | 1.984 | 0.139 | 14.233 | 202.592 | 1 | < .001 | X2 | -0.700 | 0.101 | -6.903 | 47.657 | 1 | < .001 | X3 | 1.619 | 0.200 | 8.088 | 65.414 | 1 | < .001 | Answer<br>(2 points) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------------|---|----------------|---|-----------|----------------|----|---|-------------|-------|-------|-------|--------|---|--------|----|-------|-------|--------|---------|---|--------|----|--------|-------|--------|--------|---|--------|----|-------|-------|-------|--------|---|--------|----------------------|
|             | Estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |          |                |   | Standard Error | z | Wald Test |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wald Statistic | df       | p              |   |                |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
| (Intercept) | 0.873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.123          | 7.106    | 50.494         | 1 | < .001         |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
| X1          | 1.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.139          | 14.233   | 202.592        | 1 | < .001         |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
| X2          | -0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.101          | -6.903   | 47.657         | 1 | < .001         |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
| X3          | 1.619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.200          | 8.088    | 65.414         | 1 | < .001         |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
| a           | 43.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |          |                |   |                |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
| b           | 18.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |          |                |   |                |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
| c           | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |          |                |   |                |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |
| d           | .98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |          |                |   |                |   |           |                |    |   |             |       |       |       |        |   |        |    |       |       |        |         |   |        |    |        |       |        |        |   |        |    |       |       |       |        |   |        |                      |

|    |                                                                                                                    |                   |
|----|--------------------------------------------------------------------------------------------------------------------|-------------------|
| 28 | <b>What statement concerning factor analysis is correct? If all statements (a)-(c) are false, please tick (d).</b> | Answer (2 points) |
| a  | The correlation of the variables bundled in a factor is supposed to be low.                                        |                   |
| b  | The identified factors are usually only weakly correlated.                                                         |                   |
| c  | Factor analysis aims at identifying groups of objects that share variance.                                         |                   |
| d  | All statements (a)-(c) are false.                                                                                  |                   |

| 29          | <p><b>Below you can see the JASP output of a principle component analysis (PCA) of nine different cognitive ability test scores of seventh- and eighth-grade children from two different schools. Which of the following statements is correct?</b></p> <p><b>Principal Component Analysis ▾</b></p> <p>Chi-squared Test ▾</p> <table> <thead> <tr> <th></th><th>Value</th><th>df</th><th>p</th></tr> </thead> <tbody> <tr> <td>Model</td><td>201.948</td><td>12</td><td>&lt; .001</td></tr> </tbody> </table> <p>Component Loadings</p> <table> <thead> <tr> <th></th><th>RC1</th><th>RC2</th><th>RC3</th><th>Uniqueness</th></tr> </thead> <tbody> <tr> <td>x5</td><td>0.930</td><td></td><td></td><td>0.175</td></tr> <tr> <td>x4</td><td>0.903</td><td></td><td></td><td>0.186</td></tr> <tr> <td>x6</td><td>0.875</td><td></td><td></td><td>0.207</td></tr> <tr> <td>x3</td><td></td><td>0.814</td><td></td><td>0.369</td></tr> <tr> <td>x2</td><td></td><td>0.774</td><td></td><td>0.455</td></tr> <tr> <td>x1</td><td></td><td>0.655</td><td></td><td>0.413</td></tr> <tr> <td>x7</td><td></td><td>0.876</td><td></td><td>0.278</td></tr> <tr> <td>x8</td><td></td><td>0.822</td><td></td><td>0.308</td></tr> <tr> <td>x9</td><td></td><td>0.581</td><td></td><td>0.389</td></tr> </tbody> </table> <p>Note. Applied rotation method is promax.</p> <p>Component Characteristics</p> <table> <thead> <tr> <th rowspan="2"></th><th colspan="3">Unrotated solution</th><th colspan="3">Rotated solution</th></tr> <tr> <th>Eigenvalue</th><th>Proportion var.</th><th>Cumulative</th><th>Sum Sq. Loadings</th><th>Proportion var.</th><th>Cumulative</th></tr> </thead> <tbody> <tr> <td>Component 1</td><td>3.216</td><td>0.357</td><td>0.357</td><td>2.502</td><td>0.278</td><td>0.278</td></tr> <tr> <td>Component 2</td><td>1.639</td><td>0.182</td><td>0.539</td><td>1.899</td><td>0.211</td><td>0.489</td></tr> <tr> <td>Component 3</td><td>1.365</td><td>0.152</td><td>0.691</td><td>1.819</td><td>0.202</td><td>0.691</td></tr> </tbody> </table> <p>Component Correlations</p> <table> <thead> <tr> <th></th><th>Component 1</th><th>Component 2</th><th>Component 3</th></tr> </thead> <tbody> <tr> <td>Component 1</td><td>1.000</td><td>0.319</td><td>0.218</td></tr> <tr> <td>Component 2</td><td>0.319</td><td>1.000</td><td>0.274</td></tr> <tr> <td>Component 3</td><td>0.218</td><td>0.274</td><td>1.000</td></tr> </tbody> </table> <p>a The amount of variance explained does not differ between the rotated and the unrotated solution.</p> <p>b The first and the second component of the retained solution are uncorrelated.</p> <p>c Three components were retained and three items load highly on each of them before rotation.</p> <p>d Three components were retained and three items load highly on each of them after varimax rotation.</p> |                 | Value       | df               | p               | Model      | 201.948 | 12 | < .001 |  | RC1 | RC2 | RC3 | Uniqueness | x5 | 0.930 |  |  | 0.175 | x4 | 0.903 |  |  | 0.186 | x6 | 0.875 |  |  | 0.207 | x3 |  | 0.814 |  | 0.369 | x2 |  | 0.774 |  | 0.455 | x1 |  | 0.655 |  | 0.413 | x7 |  | 0.876 |  | 0.278 | x8 |  | 0.822 |  | 0.308 | x9 |  | 0.581 |  | 0.389 |  | Unrotated solution |  |  | Rotated solution |  |  | Eigenvalue | Proportion var. | Cumulative | Sum Sq. Loadings | Proportion var. | Cumulative | Component 1 | 3.216 | 0.357 | 0.357 | 2.502 | 0.278 | 0.278 | Component 2 | 1.639 | 0.182 | 0.539 | 1.899 | 0.211 | 0.489 | Component 3 | 1.365 | 0.152 | 0.691 | 1.819 | 0.202 | 0.691 |  | Component 1 | Component 2 | Component 3 | Component 1 | 1.000 | 0.319 | 0.218 | Component 2 | 0.319 | 1.000 | 0.274 | Component 3 | 0.218 | 0.274 | 1.000 | Answer (2 points) |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|------------------|-----------------|------------|---------|----|--------|--|-----|-----|-----|------------|----|-------|--|--|-------|----|-------|--|--|-------|----|-------|--|--|-------|----|--|-------|--|-------|----|--|-------|--|-------|----|--|-------|--|-------|----|--|-------|--|-------|----|--|-------|--|-------|----|--|-------|--|-------|--|--------------------|--|--|------------------|--|--|------------|-----------------|------------|------------------|-----------------|------------|-------------|-------|-------|-------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|--|-------------|-------------|-------------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------------------|
|             | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | df              | p           |                  |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| Model       | 201.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12              | < .001      |                  |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
|             | RC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RC2             | RC3         | Uniqueness       |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x5          | 0.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |             | 0.175            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x4          | 0.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |             | 0.186            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x6          | 0.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |             | 0.207            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.814           |             | 0.369            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.774           |             | 0.455            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.655           |             | 0.413            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.876           |             | 0.278            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.822           |             | 0.308            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| x9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.581           |             | 0.389            |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
|             | Unrotated solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |             | Rotated solution |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
|             | Eigenvalue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proportion var. | Cumulative  | Sum Sq. Loadings | Proportion var. | Cumulative |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| Component 1 | 3.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.357           | 0.357       | 2.502            | 0.278           | 0.278      |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| Component 2 | 1.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.182           | 0.539       | 1.899            | 0.211           | 0.489      |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| Component 3 | 1.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.152           | 0.691       | 1.819            | 0.202           | 0.691      |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
|             | Component 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Component 2     | Component 3 |                  |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| Component 1 | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.319           | 0.218       |                  |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| Component 2 | 0.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000           | 0.274       |                  |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |
| Component 3 | 0.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.274           | 1.000       |                  |                 |            |         |    |        |  |     |     |     |            |    |       |  |  |       |    |       |  |  |       |    |       |  |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |    |  |       |  |       |  |                    |  |  |                  |  |  |            |                 |            |                  |                 |            |             |       |       |       |       |       |       |             |       |       |       |       |       |       |             |       |       |       |       |       |       |  |             |             |             |             |       |       |       |             |       |       |       |             |       |       |       |                   |

|    |                                                                                                                                                                                       |                      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 30 | <b>In a factor analysis a variable <math>X_1</math> has a communality of 0.6. Which of the following statements is correct? If all statements (a)-(c) are false, please tick (d).</b> | Answer<br>(2 points) |
| a  | All variables of the dataset together reflect 40% of the total information contained in $X_1$ .                                                                                       |                      |
| b  | 60% of the information contained in the variable $X_1$ is lost.                                                                                                                       |                      |
| c  | $X_1$ reflects 60% of the total variance explained in the factor analysis.                                                                                                            |                      |
| d  | All statements (a)-(c) are false.                                                                                                                                                     |                      |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 31 | <p><b>A conjoint analysis was conducted to analyze respondents' preferences between different types of teas. The teas are characterized by the attributes price (low, medium, high), variety (black, green, red), kind (bags, granulated, leafy), and aroma (yes, no). Based on the following output of a conjoint analysis computed with the R-function <code>conjoint()</code>, what is the total predicted utility of a green tea of medium price, in bags, and without aroma?</b></p> <pre> Residuals:     Min      1Q  Median      3Q     Max -5,1888 -2,3761 -0,7512  2,2128  7,5134  Coefficients:             Estimate Std. Error t value      Pr(&gt; t ) (Intercept) 3,55336  0,09068 39,184 &lt; 0,0000000000000002 *** factor(x\$price)1 0,24023  0,13245  1,814      0,070 . factor(x\$price)2 -0,14311  0,11485 -1,246      0,213 factor(x\$variety)1 0,61489  0,11485  5,354  0,0000001019348 *** factor(x\$variety)2 0,03489  0,11485  0,304      0,761 factor(x\$kind)1 0,13689  0,11485  1,192      0,234 factor(x\$kind)2 -0,88977  0,13245 -6,718  0,0000000000276 *** factor(x\$aroma)1 0,41078  0,08492  4,837  0,0000014751866 *** --- Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1  Residual standard error: 2,967 on 1292 degrees of freedom Multiple R-squared:  0,09003,  Adjusted R-squared:  0,0851 F-statistic: 18,26 on 7 and 1292 DF,  p-value: &lt; 0,0000000000000022  [1] "Part worths (utilities) of levels (model parameters for whole sample):"      levnms      utls 1  intercept 3,5534 2    low  0,2402 3  medium -0,1431 4    high -0,0971 5   black  0,6149 6   green  0,0349 7    red -0,6498 8   bags  0,1369 9 granulated -0,8898 10  leafy  0,7529 11   yes  0,4108 12   no -0,4108 [1] "Average importance of factors (attributes):" [1] 24,76 32,22 27,15 15,88 [1] Sum of average importance: 100,01 [1] "chart of average factors importance" &gt;   </pre> | Answer<br>(2 points) |
| a  | 3.7513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| b  | 3.2173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| c  | 3.1713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| d  | -0.3821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |

|    |                                                                                                              |                   |
|----|--------------------------------------------------------------------------------------------------------------|-------------------|
| 32 | Which of the measures of model performance for a cluster analysis trades off model complexity and model fit? | Answer (2 points) |
| a  | Silhouette coefficient                                                                                       |                   |
| b  | Within-cluster sum of squares                                                                                |                   |
| c  | Deviance                                                                                                     |                   |
| d  | Akaike Information Criterion                                                                                 |                   |

| 33        | <p><b>For the principle component analysis in Question 29, the figure below displays the scree plot with the factors' eigenvalues ordered from largest to smallest. Which method for determining the number of factors was used?</b></p> <table border="1"> <caption>Estimated data for Scree plot</caption> <thead> <tr> <th>Component</th> <th>Data Eigenvalue</th> <th>Simulated Data Eigenvalue</th> </tr> </thead> <tbody> <tr><td>1</td><td>3.2</td><td>1.2</td></tr> <tr><td>2</td><td>1.5</td><td>1.1</td></tr> <tr><td>3</td><td>1.2</td><td>1.05</td></tr> <tr><td>4</td><td>0.9</td><td>1.0</td></tr> <tr><td>5</td><td>0.8</td><td>0.98</td></tr> <tr><td>6</td><td>0.75</td><td>0.95</td></tr> <tr><td>7</td><td>0.7</td><td>0.92</td></tr> </tbody> </table> | Component                 | Data Eigenvalue | Simulated Data Eigenvalue | 1 | 3.2 | 1.2 | 2 | 1.5 | 1.1 | 3 | 1.2 | 1.05 | 4 | 0.9 | 1.0 | 5 | 0.8 | 0.98 | 6 | 0.75 | 0.95 | 7 | 0.7 | 0.92 | Answer (2 points) |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|---------------------------|---|-----|-----|---|-----|-----|---|-----|------|---|-----|-----|---|-----|------|---|------|------|---|-----|------|-------------------|
| Component | Data Eigenvalue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Simulated Data Eigenvalue |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| 1         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2                       |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| 2         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1                       |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| 3         | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.05                      |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| 4         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                       |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| 5         | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98                      |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| 6         | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.95                      |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| 7         | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92                      |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| a         | Elbow criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| b         | Scree test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| c         | Parallel analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |
| d         | Simple structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                 |                           |   |     |     |   |     |     |   |     |      |   |     |     |   |     |      |   |      |      |   |     |      |                   |

|           |                                                                                                                                          |                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>34</b> | <b>Which of the following research practices is an example of p-hacking?</b>                                                             | Answer<br>(2 points) |
| a         | Conducting a study with low statistical power.                                                                                           |                      |
| b         | Conducting a study without having conducted an a-priori power analysis.                                                                  |                      |
| c         | Excluding observations because they deviate from the pattern in the other observations and are responsible for a non-significant result. |                      |
| d         | Planning to collect a very large number of observations to increase the chance that results will be significant.                         |                      |

|           |                                                                                                                                                                                                      |                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>35</b> | <b>Which of the following statements comparing parallel analysis and the scree test is correct?</b>                                                                                                  | Answer<br>(2 points) |
| a         | Only the parallel analysis takes into account model complexity (rather than merely model fit) and therefore always suggests retaining fewer components than the scree test.                          |                      |
| b         | The parallel analysis usually points to a less appropriate component solution than the scree test because it enforces a less clearly differentiated distribution of eigenvalues than the scree plot. |                      |
| c         | Only the scree test takes into account the absolute size of the eigenvalues.                                                                                                                         |                      |
| d         | Only the parallel analysis takes into account the distribution of eigenvalues that would be expected by chance.                                                                                      |                      |

# Empirical Research in Management and Economics

## Answer Sheet for Multiple Choice Questions

Last name

First name

Student ID (matriculation number)

### Instructions:

- **ONLY ANSWERS ON THIS SHEET ARE GRADED!**
- There is only **one correct answer** per question.
- **Fill in the entire circle** that corresponds to your answer for each question on the exam.
- Use a **pen**, not a pencil.
- **To make a change, fill in the circle for the correct answer and mark it with an arrow next to it.**

|    |                         |                         |                         |                         |
|----|-------------------------|-------------------------|-------------------------|-------------------------|
| 1  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 2  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 3  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 4  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 5  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 6  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 7  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 8  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 9  | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 10 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 11 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 12 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 13 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 14 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 15 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 16 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 17 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 18 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 19 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 20 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |

|    |                         |                         |                         |                         |
|----|-------------------------|-------------------------|-------------------------|-------------------------|
| 21 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 22 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 23 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 24 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 25 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 26 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 27 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 28 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 29 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 30 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 31 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 32 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 33 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 34 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |
| 35 | <input type="radio"/> A | <input type="radio"/> B | <input type="radio"/> C | <input type="radio"/> D |