

Empirical research in management and economics

Exercise

Thorsten Pachur, Linus Hof, Rebecca West,
Sebastian Hellmann, Nuno Busch

*Technical University of Munich
School of Management
Chair of Behavioral Research Methods*

Exercise 1

- Open dataset “Noodles.csv”
→Annual sales (in \$) per square foot of floor space as function of
 - Number of interior seats (Seats-Inside)
 - Number of outside seats (Seats-Patio)
 - Median family income in neighborhood (in thousand \$) (MedIncome)
 - Median age in neighborhood (in years) (MedAge)
 - Percentage of population with at least a Bachelor's degree (BachDeg%)
- Which of the restaurant characteristics predict sales?
 - Run a multiple regression analysis
 - Check the assumptions (linearity, homoscedasticity, normality, multicollinearity)
 - Calculate **by hand** the standardized regression coefficients for the predictors “Seats-Inside” and “Seats-Patio”

Top Left Window (Descriptives):

The 'Descriptives' tab is selected. The 'Correlation plots' checkbox is checked and highlighted with a red circle. The 'Basic plots' section shows 'Correlation plots' is selected. The 'Variables' list includes Sales, Inside, Patio, MedIncome, MedAge, and BachDeg. The 'Results' section displays Descriptive Statistics and a Correlation plot matrix.

Top Right Window (Regression):

The 'Regression' tab is selected. The 'Correlation' section is open, showing Pearson's Correlation Coefficient settings. The 'Results' section displays Pearson's Correlations for all variables.

Bottom Left Window (Correlation):

The 'Correlation' section is open, showing Pearson's Correlation Coefficient settings. The 'Results' section displays Pearson's Correlations for all variables.

Noodles* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS24\Empirical Research\Exercises\07_Regression_1)

Descriptives T-Tests ANOVA Mixed Models **Regression** Frequencies Factor Machine Learning Meta-Analysis Power Reliability

Linear Regression ▾

Model Summary - Sales

Model	R	R ²	Adjusted R ²	RMSE
M ₀	0.000	0.000	0.000	137.233
M ₁	0.483	0.233	0.177	124.529

Note: M₁ includes Inside, Patio, MedIncome, MedAge, BachDeg

ANOVA

Model	Sum of Squares	df	Mean Square	F	p
M ₁	Regression: 320270.817	5	64055.303	4.131	0.002
	Residual: 1.055×10 ⁶	68	15507.585		
	Total: 1.375×10 ⁶	73			

Note: M₁ includes Inside, Patio, MedIncome, MedAge, BachDeg

Note: The intercept model is omitted, as no meaningful information can be shown.

Coefficients

Model	Estimates			Collinearity Statistics	
	Unstandardized	Standard Error	Standardized	t	p
M ₀	(Intercept)	420.270	15.953	26.344	<.001
M ₁	(Intercept)	429.511	182.191	2.357	0.021
	Inside	-1.815	0.998	-1.819	0.073
	Patio	1.272	1.061	1.198	0.235
	MedIncome	-2.102	1.094	-0.274	0.059
	MedAge	-0.016	4.489	-0.004	0.997
	BachDeg	8.660	2.619	3.307	0.002

Descriptives

	N	Mean	SD	SE
Sales	74	420.270	137.233	15.953
Inside	74	74.014	14.936	1.736
Patio	74	23.446	13.995	1.627
MedIncome	74	62.815	17.910	2.082
MedAge	74	35.201	3.655	0.425
BachDeg	74	26.311	7.005	0.814

Residuals vs. Predicted

Standardized Residuals Histogram

Q-Q Plot Standardized Residuals

Residuals for prediction based on all predictors

Standardized regression coefficients

→ Allows for a comparison of regression coefficients between predictors

$$\rightarrow \beta_i = b_i \times \frac{SD_{X_i}}{SD_Y}$$

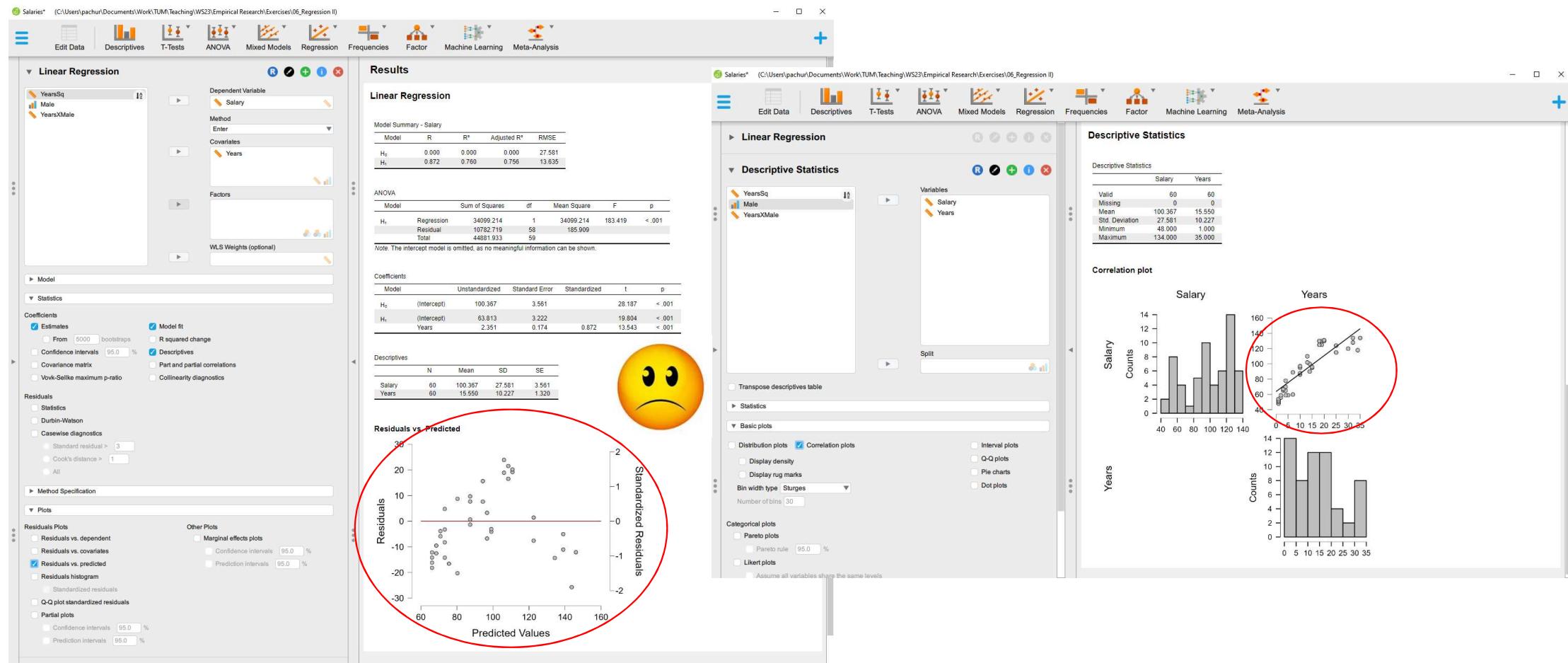
Interpretation of standardized regression coefficients:
changes in terms of **standard deviations in z-transformed data**

$$\widehat{Sales} = 429.511 - 1.815 \times Inside + 1.272 \times Patio$$

$$\beta_{inside} = -1.815 \times \frac{14.936}{137.233} = -.198$$

$$\beta_{patio} = 1.272 \times \frac{13.995}{137.233} = .130$$

$$\rightarrow z(\widehat{Sales}) = 0 - 0.198 \times z(Inside) + .130 \times z(Patio)$$


↑
Intercept!

$$SD_{sales} = 137.233$$
$$SD_{inside} = 14.936$$
$$SD_{patio} = 13.99$$

Exercise II: Dealing with nonlinearity

- Open dataset “Salaries.csv“ in JASP
→ Salaries of 60 engineers along with their years of experience
- Build a regression model to test whether and how salary is associated with years of experience
- Check for linearity
- Add squared years of experience (“YearsSq“) as predictor
→ Years of experience is only associated with higher salary up to a point and the effect then flattens

Salaries* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS23\Empirical Research\Exercises\06_Regression II)

Edit Data Descriptives T-Tests ANOVA Mixed Models Regression Frequencies Factor Machine Learning Meta-Analysis

Linear Regression

Dependent Variable: Salary

Method: Enter

Covariates: Years, YearsSq

Factors: (empty)

WLS Weights (optional): (empty)

Linear Regression

Model Summary - Salary

Model	R	R ²	Adjusted R ²	RMSE
H ₀	0.000	0.000	0.000	27.581
H ₁	0.948	0.899	0.895	8.927

ANOVA

Model	Sum of Squares	df	Mean Square	F	p
H ₁	Regression	40339.170	2	20169.585	253.076 < .001
	Residual	4542.763	57	79.698	
	Total	44881.933	59		

Note: The intercept model is omitted, as no meaningful information can be shown.

Coefficients

Model	Unstandardized	Standard Error	Standardized	t	p
H ₀	(Intercept)	100.367	3.561	28.187	< .001
H ₁	(Intercept)	44.884	3.005	14.939	< .001
	Years	5.736	0.399	14.372	< .001
	YearsSq	-0.098	0.011	-1.310	8.848 < .001

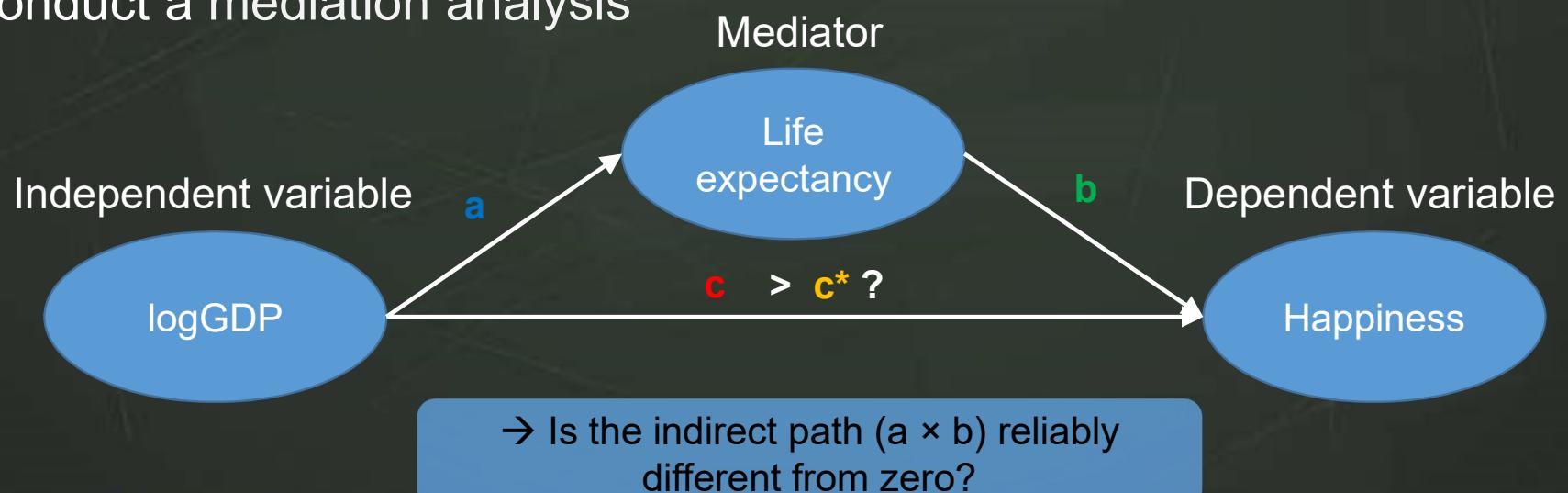
Descriptives

	N	Mean	SD	SE
Salary	60	100.367	27.581	3.561
Years	60	15.550	10.227	1.320
YearsSq	60	344.650	369.194	47.663

Residuals vs. Predicted

Residuals

Standardized Residuals


Predicted Values

Exercise III: Mediation analysis

Open dataset “WorldHappiness_extended.csv” in JASP

Is the effect of logGDP on happiness mediated by life expectancy (i.e., health conditions) in a country?

→ Conduct a mediation analysis

WorldHappiness_extended* (autosaved) (C:\Users\pachur\Documents\Work\TUM\Teaching\WS25\Empirical Research\Exercises\07_Regression II)

Edit Data Descriptives T-Tests ANOVA Mixed Models Regression Frequencies Factor Machine Learning Meta-Analysis Power Process Reliability

country Happiness Social support Healthy life expectancy at birth Freedom to make life choices Perceptions of corruption Log GGP p. ESCI (Beta) JAGS Learn Bayes Learn Stats Machine Learning Meta-Analysis Network Power Predictive Analytics

1 Afghanistan 2.66171813 0.490880072 52.33952713 0.427010864 0.954392552 7.460134566 Machine Learning Meta-Analysis Network Power Predictive Analytics

2 Albania 4.639548302 0.637698293 69.05165863 0.74961102 0.876134634 9.373182622 JAGS Learn Bayes Learn Stats

3 Algeria 5.248912334 0.806753874 65.69918823 0.436670482 0.699774206 9.542044102 Machine Learning Meta-Analysis Network Power Predictive Analytics

4 Argentina 6.039330006 0.908699121 67.53870392 0.831986162 0.841052473 9.843519211 Machine Learning Meta-Analysis Network Power Predictive Analytics

5 Armenia 4.287736416 0.897924912 65.12568665 0.613697052 0.86468333 9.034216062 Machine Learning Meta-Analysis Network Power Predictive Analytics

6 Australia 7.25703764 0.94957848 72.78334045 0.910550177 0.411346525 10.71826222 Machine Learning Meta-Analysis Network Power Predictive Analytics

7 Austria 7.293727875 0.906217813 72.35971069 0.890030563 0.518303812 10.71826222 Machine Learning Meta-Analysis Network Power Predictive Analytics

8 Azerbaijan 5.152279377 0.787039399 63.07531357 0.731030464 0.652539015 9.853182622 Machine Learning Meta-Analysis Network Power Predictive Analytics

9 Bahrain 6.227320671 0.875747144 66.12399292 0.905858517 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

10 Bangladesh 4.309771061 0.712552786 62.50415421 0.896217167 0.635014474 8.163216062 Machine Learning Meta-Analysis Network Power Predictive Analytics

11 Belarus 5.552915096 0.900255799 66.60596466 0.620979249 0.654113412 9.71826222 Machine Learning Meta-Analysis Network Power Predictive Analytics

12 Belgium 6.928347588 0.921639085 72.14292908 0.856801987 0.543046057 10.68134566 Machine Learning Meta-Analysis Network Power Predictive Analytics

13 Benin 4.853180885 0.435878992 51.79475021 0.72680825 0.767234623 7.394216062 Machine Learning Meta-Analysis Network Power Predictive Analytics

14 Bolivia 5.65055275 0.778661788 60.34379578 0.883904934 0.819261968 9.43216062 Machine Learning Meta-Analysis Network Power Predictive Analytics

15 Bosnia and Herzegovina 5.089902401 0.775295258 67.99448395 0.563798666 0.923343062 9.371712685 Machine Learning Meta-Analysis Network Power Predictive Analytics

16 Botswana 3.504881144 0.768258631 58.01321411 0.817308009 0.731441498 9.683216062 Machine Learning Meta-Analysis Network Power Predictive Analytics

17 Brazil 6.332929134 0.904694259 65.45373535 0.764792562 0.794457376 9.542044102 Machine Learning Meta-Analysis Network Power Predictive Analytics

18 Bulgaria 5.096901894 0.94175458 66.4154892 0.689047039 0.910799742 9.82216062 Machine Learning Meta-Analysis Network Power Predictive Analytics

19 Burkina Faso 4.846891117 0.784761369 52.3994751 0.613774717 0.727451324 7.434216062 Machine Learning Meta-Analysis Network Power Predictive Analytics

20 Cambodia 4.585842133 0.765094936 58.63087463 0.963774681 0.821022928 8.20216062 Machine Learning Meta-Analysis Network Power Predictive Analytics

21 Cameroon 5.07405138 0.69459641 50.14022446 0.768945004 0.84358561 8.12816062 Machine Learning Meta-Analysis Network Power Predictive Analytics

22 Central African Republic 3.475862026 0.319589138 44.64535141 0.645252347 0.889566004 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

23 Chad 4.558937073 0.860615563 45.98406219 0.614849687 0.792389929 7.490785122 Machine Learning Meta-Analysis Network Power Predictive Analytics

24 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

25 Costa Rica 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

26 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

27 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

28 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

29 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

30 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

31 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

32 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

33 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

34 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

35 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

36 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

37 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

38 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

39 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

40 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

41 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

42 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

43 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

44 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

45 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

46 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

47 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

48 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

49 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

50 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

51 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

52 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

53 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

54 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

55 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

56 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

57 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

58 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

59 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

60 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

61 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

62 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

63 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

64 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

65 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

66 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

67 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

68 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

69 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

70 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

71 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

72 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

73 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

74 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

75 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

76 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

77 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

78 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

79 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

80 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

81 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

82 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

83 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

84 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

85 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

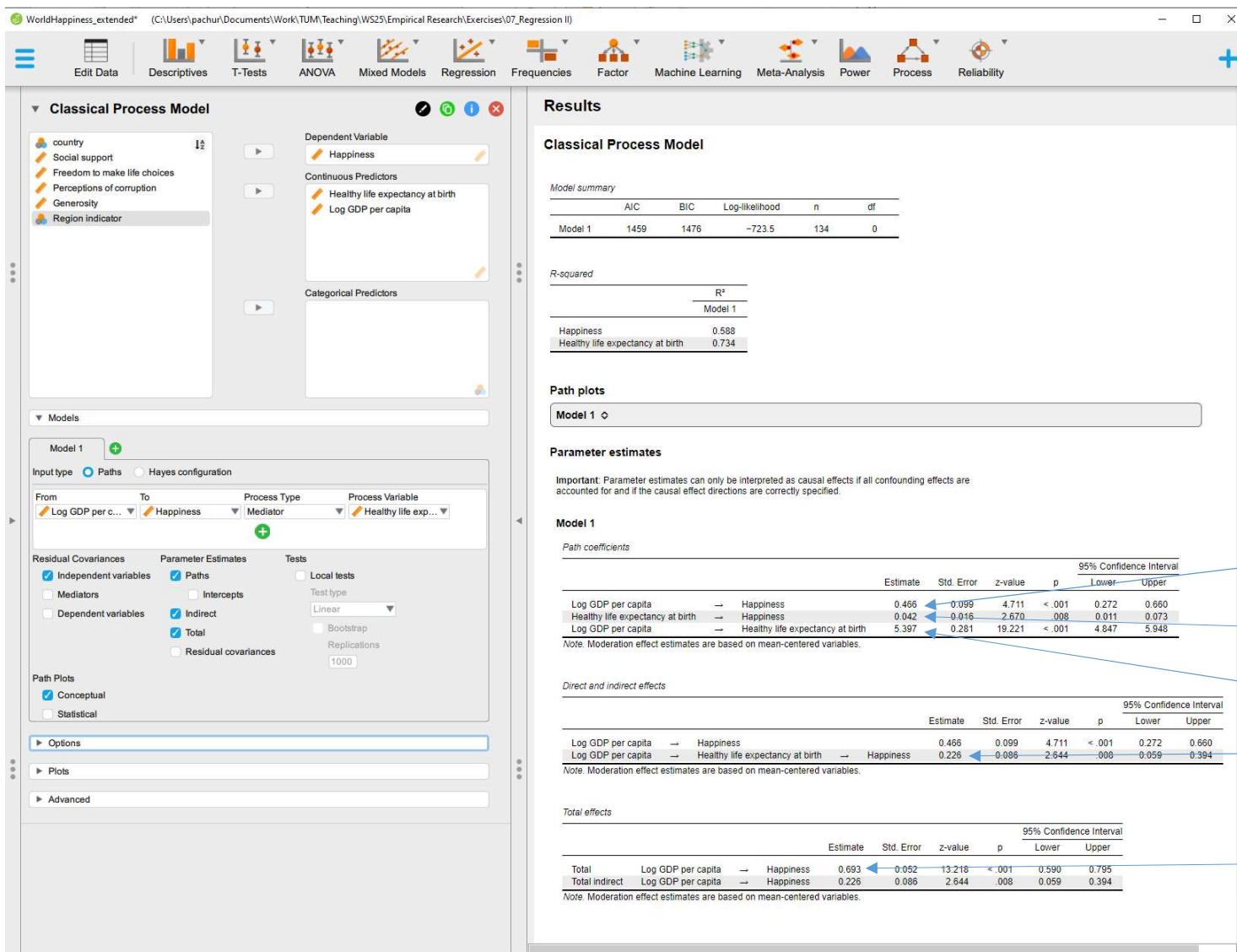
86 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

87 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

88 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

89 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

90 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics


91 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

92 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

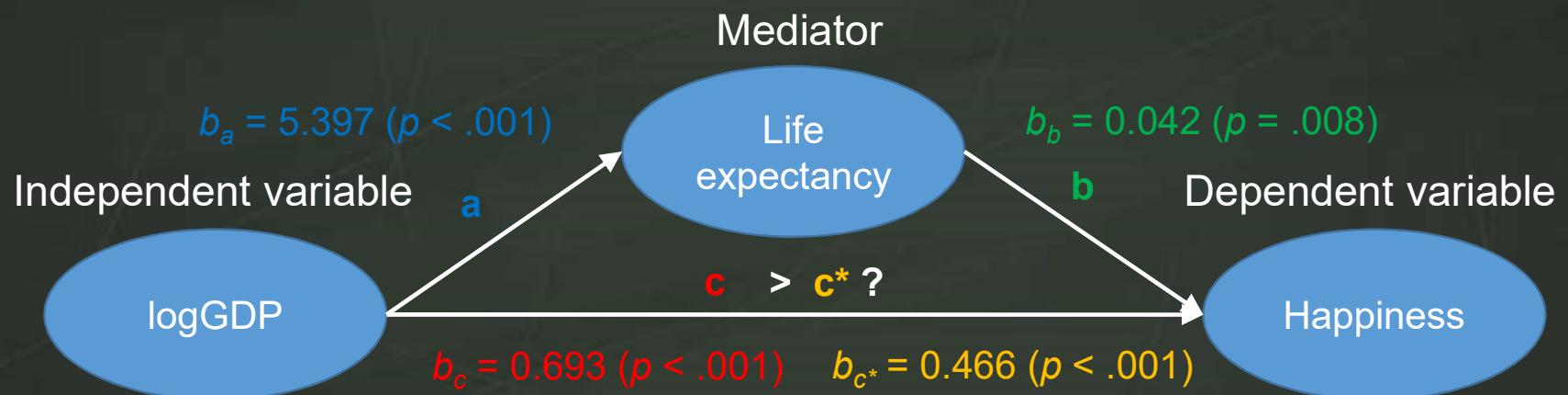
93 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

94 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis Network Power Predictive Analytics

95 Côte d'Ivoire 6.622441606 0.676161761 66.60602406 0.702441606 0.826657606 - NA Machine Learning Meta-Analysis

Paths

c*


b

a

a × b

c

Exercise III: Mediation analysis

Statistical evaluation of the indirect path ($a \times b$)

$a \times b = 0.226, CI_{95\%} = [0.059, 0.394], p = .008$