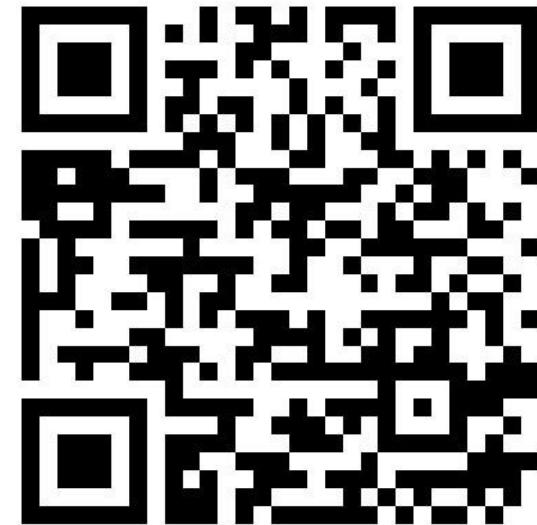


Empirical research in management and economics

Exercise

Thorsten Pachur, Linus Hof, Rebecca West,
Sebastian Hellmann, Nuno Busch


*Technical University of Munich
School of Management
Chair of Behavioral Research Methods*

*Please remember to take part in the brief
mid-term survey!*

<https://forms.gle/bt71nwC1Q2r247hE6>

(Please participate at the survey irrespective of whether you are attending in person or watching the recording.)

Exercise: Logistic regression I

- Open the dataset “Default.csv“ in JASP

→ Sample of mortgage loans from 200 borrowers. For each loan, it is given whether the loan defaulted or not and some information on the borrower:

- Age
- Years of education
- Employed (yes, no)
- Married (yes, no)
- Ratio of mortgage to income

- Conduct a logistic regression analysis

- What factors predict occurrence of a default—and how? Also interpret the odds ratios in the JASP output.
- Calculate the predicted probability of a default of a \$235,500 loan by a 48 year-old, employed, and married borrower, who has an annual income of \$70,090 and 16 years of education.
- Do the same for a 47 year-old borrower of a \$ 367,300 loan, who is employed and unmarried, and has an annual income of \$115,880 and 12 years of education.

Default* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS24\Empirical Research\Exercises\08_Regression III)

Edit Data Descriptives T-Tests ANOVA Mixed Models Regression Frequencies Factor Machine Learning Meta-Analysis Power Reliability

Logistic Regression

Dependent Variable: Default

Method: Enter

Covariates: YrsEduc, Ratio, Age

Factors: Employed, Married

Results

Logistic Regression

Model Summary - Default

Model	Deviance	AIC	BIC	df	$\Delta\chi^2$	p	McFadden R ²	Nagelkerke R ²	Tjur R ²	Cox & Snell R ²
M ₀	227.105	229.105	232.403	199			0.000	0.000	0.000	
M ₁	190.269	202.269	222.059	194	36.836	< .001	0.162	0.248	0.182	0.168

Note: M₁ includes YrsEduc, Ratio, Age, Employed, Married

Coefficients

Model	Estimate	Standard Error	Standardized*	Odds Ratio	z	Wald Test		
						Wald Statistic	df	p
M ₀ (Intercept)	-1.072	0.162	-1.072	0.342	-6.609	43.673	1	< .001
M ₁ (Intercept)	-2.466	1.632	0.909	0.085	-1.511	2.282	1	0.131
YrsEduc	-0.055	0.079	-0.129	0.946	-0.703	0.495	1	0.482
Ratio	1.318	0.309	0.900	3.736	4.267	18.209	1	< .001
Age	0.025	0.022	0.214	1.026	1.166	1.360	1	0.243
Employed (1)	-1.685	0.566	-1.685	0.185	-2.978	8.870	1	0.003
Married (1)	-0.865	0.433	-0.865	0.421	-1.998	3.993	1	0.046

Note: Default level '1' coded as class 1.

* Standardized estimates represent estimates where the continuous predictors are standardized (X-standardization).

Multicollinearity Diagnostics

	Tolerance	VIF
YrsEduc	0.969	1.032
Ratio	0.948	1.054
Age	0.967	1.035
Employed	0.895	1.117
Married	0.991	1.009

Performance Diagnostics

Confusion matrix

Observed	Predicted		% Correct
	0	1	
0	142	7	95.302
1	38	13	25.490
Overall % Correct			77.500

Note: The cut-off value is set to 0.5

Performance metrics

	Value
Accuracy	0.775

Predicted probability of default

Regression equation (predicted log odds)

$$\log\left(\frac{p(\widehat{default})}{p(\text{no default})}\right) = -2.466 - 0.055 \times \text{YrsEduc} + 1.318 \times \text{Ratio} + 0.025 \times \text{Age} - 1.685 \times \text{Employed} - 0.865 \times \text{Married}$$

YrsEduc = 16 Ratio = 235,500/70,090 = 3.36 Age = 48 Employed = 1 Married = 1

Exponentiated regression equation (predicted odds)

$$\frac{p(\widehat{default})}{p(\text{no default})} = e^{-2.466 - 0.055 \times 16 + 1.318 \times 3.36 + 0.025 \times 48 - 1.685 \times 1 - 0.865 \times 1} = e^{-0.268} = .765$$

Predicted probability from predicted odds

$$p(\widehat{default}) = \frac{.765}{1 + .765} = .43$$

The person has a 43% chance of not being able to pay back the loan.

Predicted probability of default

Regression equation (predicted log odds)

$$\log\left(\frac{p(\text{default})}{p(\text{no default})}\right) = -2.466 - 0.055 \times \text{YrsEduc} + 1.318 \times \text{Ratio} + 0.025 \times \text{Age} - 1.685 \times \text{Employed} - 0.865 \times \text{Married}$$

YrsEduc = 12 Ratio = 367,300/115,880 = 3.17 Age = 47 Employed = 1 Married = 0

Exponentiated regression equation (predicted odds)

$$\frac{p(\text{default})}{p(\text{no default})} = e^{-2.466 - 0.055 \times 12 + 1.318 \times 3.17 + 0.025 \times 47 - 1.685 \times 1 - 0.865 \times 0} = e^{0.542} = 1.720$$

Predicted probability from predicted odds

$$p(\text{default}) = \frac{1.720}{1 + 1.720} = .63$$

The person has a 63% chance of not being able to pay back the loan.

Exercise: Sample-size considerations

Assess whether in the dataset “Default.csv“ the sample-size considerations discussed in the lecture are fulfilled

- How many cases are there for the different levels of the dependent variable and which level occurs less frequently?
- What is the minimum number of cases given the number of predictors in the dataset?

Default* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS24\Empirical Research\Exercises\08_Regression III)

Edit Data Descriptives T-Tests ANOVA Mixed Models Regression Frequencies Factor Machine Learning Meta-Analysis Power Reliability

Logistic Regression

Dependent Variable: Default

Method: Enter

Covariates: YrsEduc, Ratio, Age

Factors: Employed, Married

Results

Logistic Regression

Model Summary - Default

Model	Deviance	AIC	BIC	df	ΔX^2	p	McFadden R ²	Nagelkerke R ²	Tjur R ²	Cox & Snell R ²
M ₀	227.105	229.105	232.403	199			0.000	0.000	0.000	0.000
M ₁	190.269	202.269	222.059	194	36.836	< .001	0.162	0.248	0.182	0.168

Note: M₁ includes YrsEduc, Ratio, Age, Employed, Married

Coefficients

Model	Estimate	Standard Error	Standardized*	Odds Ratio	z	Wald Test		
						Wald Statistic	df	p
M ₀ (Intercept)	-1.072	0.162	-1.072	0.342	-6.609	43.673	1	< .001
M ₁ (Intercept)	-2.466	1.632	0.909	0.085	-1.511	2.282	1	0.131
YrsEduc	-0.055	0.079	-0.129	0.946	-0.703	0.495	1	0.482
Ratio	1.318	0.309	0.900	3.736	4.267	18.209	1	< .001
Age	0.025	0.022	0.214	1.026	1.166	1.360	1	0.243
Employed (1)	-1.685	0.568	-1.685	0.185	-2.978	8.870	1	0.003
Married (1)	-0.865	0.433	-0.865	0.421	-1.998	3.993	1	0.046

Note: Default level '1' coded as class 1.

* Standardized estimates represent estimates where the continuous predictors are standardized (X-standardization).

Multicollinearity Diagnostics

Tolerance	VIF	
YrsEduc	0.969	1.032
Ratio	0.948	1.054
Age	0.967	1.035
Employed	0.895	1.117
Married	0.991	1.009

Performance Diagnostics

Confusion matrix

		Predicted		% Correct
		0	1	
Observed	0	142	7	95.302
	1	38	13	25.490
Overall % Correct				77.500

Note: The cut-off value is set to 0.5

Performance metrics

Value	
Accuracy	0.775

→ 149 cases without burnout, 51 cases with burnout (51 > 5*10, so the basic requirement is fulfilled)

Exercise: Logistic regression II

- Open the dataset “Burnout.csv“ in JASP
 - Burnout among academics predicted by
 - perceived internal locus of control (high value=low control!), perceived stress from teaching activities, perceived stress from research activities, perceived stress from pastoral care
- Conduct a logistic regression analysis
 - What factors predict occurrence of burnout—and how? Also interpret the odds ratios in the JASP output.
 - Compare models with different numbers of predictors in terms of AIC and BIC to observe the trade-off between model fit and model complexity.
 - Use the best-performing model (in terms of AIC) to calculate the predicted probability of burnout for a person with scores on perceived internal control of 18, stress from teaching of 60, stress from research of 52, and stress from pastoral care of 55.

BurnOut* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS23\Empirical Research\Exercises\07_Regression III)

Name: BurnOut Long name: BurnOut

Description:

Label Editor

value	Label
1	Burnt Out
2	Not Burnt Out

BurnOut InternalControl stressTeaching stressResearch stressPastoral

1 Burnt Out 12.94117647 45.45454545 52.08333333 61.11111111
 2 Not Burnt Out 22.35294118 54.54545455 52.08333333 57.40740741
 3 Burnt Out 14.70588235 61.81818182 64.58333333 53.7037037
 4 Burnt Out 14.70588235 49.09090909 35.41666667 55.55555556
 5 Burnt Out 22.35294118 63.63636364 64.58333333 68.51851852
 6 Burnt Out 12.94117647 47.27272727 50 42.59252529
 7 Burnt Out 12.94117647 72.72727273 85.41666667 57.40740741
 8 Burnt Out 14.11764706 45.45454545 68.75 53.7037037
 9 Burnt Out 11.76470588 67.27272727 54.16666667 50
 10 Burnt Out 30.58823529 50.90909091 77.08333333 51.85185185
 11 Burnt Out 14.70588235 41.81818182 45.83333333 46.2962963
 12 Burnt Out 22.35294118 62.27272727 85.41666667 77.77777718

BurnOut* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS23\Empirical Research\Exercises\07_Regression III)

Logistic Regression

Dependent Variable: BurnOut

Method: Enter

Covariates: InternalControl, stressTeaching, stressResearch, stressPastoral

Factors: BurnOut, Not Burnt Out

Results

Logistic Regression

Model Summary - BurnOut

Model	Deviance	AIC	BIC	df	χ^2	p	McFadden R ²	Nagelkerke R ²	Tjur R ²	Cox & Snell R ²
H ₀	530.107	532.107	536.254	466						
H ₁	449.324	459.324	480.055	462	80.784	< .001	0.152	0.234	0.179	0.159

Coefficients

	Estimate	Standard Error	z	Wald Statistic	df	p
(Intercept)	4.560	0.909	5.017	25.170	1	< .001
InternalControl	-0.065	0.011	-5.634	31.742	1	< .001
stressTeaching	-0.011	0.012	-0.930	0.865	1	0.352
stressResearch	-0.001	0.008	-0.706	0.498	1	0.480
stressPastoral	0.038	0.010	3.395	11.523	1	< .001

Note: BurnOut level 'Not Burnt Out' coded as class 1.

BurnOut* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS23\Empirical Research\Exercises\07_Regression III)

Name: BurnOut Long name: BurnOut

Description:

Label Editor

value	Label
2	Not Burnt Out
1	Burnt Out

Reverse order of all labels

BurnOut InternalControl stressTeaching stressResearch stressPastoral

1 Burnt Out 12.94117647 45.45454545 52.08333333 61.11111111
 2 Not Burnt Out 22.35294118 54.54545455 52.08333333 57.40740741
 3 Burnt Out 14.70588235 61.81818182 64.58333333 53.7037037
 4 Burnt Out 14.70588235 49.09090909 35.41666667 55.55555556
 5 Burnt Out 22.35294118 63.63636364 64.58333333 68.51851852
 6 Burnt Out 12.94117647 47.27272727 50 42.59252529
 7 Burnt Out 12.94117647 72.72727273 85.41666667 57.40740741
 8 Burnt Out 14.11764706 45.45454545 68.75 53.7037037
 9 Burnt Out 11.76470588 67.27272727 54.16666667 50
 10 Burnt Out 30.58823529 50.90909091 77.08333333 51.85185185
 11 Burnt Out 14.70588235 41.81818182 45.83333333 46.2962963
 12 Burnt Out 22.35294118 62.27272727 85.41666667 77.77777718

BurnOut* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS23\Empirical Research\Exercises\07_Regression III)

Logistic Regression

Dependent Variable: BurnOut

Method: Enter

Covariates: InternalControl, stressTeaching, stressResearch, stressPastoral

Factors: BurnOut, Not Burnt Out

Results

Logistic Regression

Model Summary - BurnOut

Model	Deviance	AIC	BIC	df	χ^2	p	McFadden R ²	Nagelkerke R ²	Tjur R ²	Cox & Snell R ²
H ₀	530.107	532.107	536.254	466						
H ₁	449.324	459.324	480.055	462	80.784	< .001	0.152	0.234	0.179	0.159

Coefficients

	Estimate	Standard Error	z	Wald Statistic	df	p
(Intercept)	-4.560	0.909	-5.017	25.170	1	< .001
InternalControl	0.065	0.011	5.634	31.742	1	< .001
stressTeaching	0.11	0.012	9.065	0.932	1	0.352
stressResearch	-0.006	0.008	-0.706	0.498	1	0.480
stressPastoral	0.038	0.010	3.395	11.523	1	< .001

Note: BurnOut level 'Burnt Out' coded as class 1.

File Edit Data Descriptives T-Tests ANOVA Mixed Models Regression Frequencies Factor Machine Learning Meta-Analysis Power Reliability

Logistic Regression

Dependent Variable: BurnOut

Method: Enter

Covariates: InternalControl, stressPastoral, stressTeaching, stressResearch

Results

Logistic Regression

Model Summary - BurnOut

Model	Deviance	AIC	BIC	df	ΔX^2	p	McFadden R ²	Nagelkerke R ²	Tjur R ²	Cox & Snell R ²
M ₀	530.107	532.107	536.254	466			0.000	0.000	0.000	0.159
M ₁	449.324	459.324	480.055	462	80.784	< .001	0.152	0.234	0.179	

Note: M₁ includes InternalControl, stressPastoral, stressTeaching, stressResearch

Coefficients

Model	Estimate	Standard Error	Standardized*	Odds Ratio	z	Wald Test		
						Wald Statistic	df	p
M ₀ (Intercept)	-1.073	0.106	-1.073	0.342	-10.105	102.111	1	< .001
M ₁ (Intercept)	-4.560	0.909	-4.560	0.010	-5.017	25.170	1	< .001
InternalControl	0.065	0.011	0.770	1.067	5.634	31.742	1	< .001
stressPastoral	0.035	0.010	0.469	1.035	3.395	11.523	1	< .001
stressTeaching	0.011	0.012	0.138	1.011	0.930	0.865	1	0.352
stressResearch	-0.006	0.008	-0.086	0.994	-0.706	0.499	1	0.480

Note: BurnOut level 'Burnt Out' coded as class 1.
* Standardized estimates represent estimates where the continuous predictors are standardized (X-standardization).

Multicollinearity Diagnostics

	Tolerance	VIF
InternalControl	0.824	1.214
stressPastoral	0.762	1.312
stressTeaching	0.683	1.463
stressResearch	0.953	1.050

Performance Diagnostics

Confusion matrix

Observed	Predicted		% Correct
	Not Burnt Out	Burnt Out	
Not Burnt Out	328	20	94.253
Burnt Out	86	33	27.731
Overall % Correct			77.302

Note: The cut-off value is set to 0.5

Performance metrics

Value	
Accuracy	0.773

Low internal control (note the reversed coding of the variable!) and high pastoral care are associated with a higher probability of burnout

Burnout* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS24\Empirical Research\Exercises\08_Regression II)

Logistic Regression

Dependent Variable: BurnOut

Method: Enter

Covariates: InternalControl, stressPastoral

Results

Logistic Regression

Model Summary - BurnOut

Model	Deviance	AIC	BIC	df	$\Delta\chi^2$	p	McFadden R ²	Nagelkerke R ²	Tjur R ²	Cox & Snell R ²
M ₀	530.107	532.107	536.254	466			0.000	0.000	0.000	
M ₁	450.844	456.844	469.283	464	79.263	< .001	0.150	0.230	0.177	0.156

Note: M₁ includes InternalControl, stressPastoral

Coefficients

Model	Estimate	Standard Error	Standardized ^a	Odds Ratio	Wald Test				
					z	Wald Statistic	df	p	
M ₀	(Intercept)	-1.073	0.106	-1.073	0.342	-10.105	102.111	1	< .001
M ₁	(Intercept)	-4.721	0.592	-1.236	0.009	-7.973	63.576	1	< .001
	InternalControl	0.070	0.010	0.839	1.073	6.710	45.021	1	< .001
	stressPastoral	0.040	0.009	0.543	1.041	4.487	20.133	1	< .001

Note: BurnOut level 'Burnt Out' coded as class 1.

^a Standardized estimates represent estimates where the continuous predictors are standardized (X-standardization).

Multicollinearity Diagnostics

	Tolerance	VIF
InternalControl	0.990	1.010
stressPastoral	0.990	1.010

Performance Diagnostics

Confusion matrix

Observed	Predicted	
	Not Burnt Out	Burnt Out
Not Burnt Out	329	19
Burnt Out	87	32
Overall % Correct		77.302

Note: The cut-off value is set to 0.5

Performance metrics

	Value
Accuracy	0.773

BurnOut* (C:\Users\pachur\Documents\Work\TUM\Teaching\WS25\Empirical Research\Exercises\08_Regression III)

Edit Data Descriptives T-Tests ANOVA Mixed Models Regression Frequencies Factor Machine Learning Meta-Analysis Power Process Reliability

Results ▾

Logistic Regression ▾

Model Summary - BurnOut

Model	Deviance	AIC	BIC	df	$\Delta\chi^2$	p	McFadden R ²	Nagelkerke R ²	Tjur R ²	Cox & Snell R ²
M ₀	530.1	532.107	536.254	466			0.000	0.000	0.000	0.000
M ₁	450.8	456.844	469.283	464	79.263	< .001	0.150	0.230	0.177	0.156
M ₂	449.3	459.324	480.055	462	1.521	.467	0.152	0.234	0.179	0.159

Note: M₀ includes stressPastoral, InternalControl
Note: M₁ includes stressPastoral, InternalControl, stressTeaching, stressResearch

Coefficients

Model	Estimate	Standard Error	Odds Ratio	z	Wald Test		
					Wald Statistic	df	p
M ₀ (Intercept)	-1.073	0.106	0.342	-10.105	102.111	1	< .001
M ₁ (Intercept)	-4.721	0.592	0.009	-7.973	63.576	1	< .001
stressPastoral	0.040	0.009	1.041	4.487	20.133	1	< .001
InternalControl	0.070	0.010	1.073	6.710	45.021	1	< .001
M ₂ (Intercept)	-4.560	0.909	0.010	-5.017	25.170	1	< .001
stressPastoral	0.035	0.010	1.035	3.395	11.523	1	< .001
InternalControl	0.065	0.011	1.067	5.634	31.742	1	< .001
stressTeaching	0.011	0.012	1.011	0.930	0.865	1	.352
stressResearch	-0.006	0.008	0.994	-0.706	0.499	1	.480

Note: BurnOut level 'Burnt Out' coded as class 1.

Multicollinearity Diagnostics

Tolerance	VIF	
stressPastoral	0.762	1.312
InternalControl	0.824	1.214
stressTeaching	0.683	1.463
stressResearch	0.953	1.050

Performance Diagnostics ▾

Confusion matrix

Observed	Predicted		% Correct
	Not Burnt Out	Burnt Out	
Not Burnt Out	328	20	94.25
Burnt Out	86	33	27.73
Overall % Correct			77.30

Note: The cut-off value is set to 0.5

Performance metrics

Value

The screenshot shows the SPSS Modeler interface for a logistic regression analysis. The left panel displays the 'Model' structure, showing three nested models: Model 0 (empty), Model 1 (including stressPastoral and InternalControl), and Model 2 (including stressPastoral, InternalControl, stressTeaching, and stressResearch). The 'Model' section is circled in red. The right panel shows the 'Results' section with the 'Logistic Regression' results. The 'Model Summary' table provides deviance, AIC, BIC, df, and various R-squared values for three models. The 'Coefficients' table lists the estimates, standard errors, odds ratios, and p-values for each variable in each model. The 'Multicollinearity Diagnostics' table shows tolerance and VIF values for each variable. The 'Performance Diagnostics' section includes a confusion matrix and performance metrics. Red circles highlight the 'Model' section, the 'Coefficients' table, and the 'Multicollinearity Diagnostics' table.

Predicted probability of burnout

Regression equation (predicted log odds)

$$\log\left(\frac{p(\widehat{burnout})}{p(\text{no burnout})}\right) = -4.721 + 0.04 \times \text{stressPastoral} + 0.07 \times \text{internalControl}$$

stressPastoral = 55

internalControl = 18

Exponentiated regression equation (predicted odds)

$$\frac{p(\widehat{burnout})}{p(\text{no burnout})} = e^{-4.721 + .04 \times 55 + 0.07 \times 18} = e^{-1.261} = .283$$

Predicted probability from predicted odds

$$p(\widehat{burnout}) = \frac{.283}{1 + .283} = .22$$

A person with a perceived internal control score of 18 and a stress from pastoral care score of 55 has a chance to experience burnout of 22%