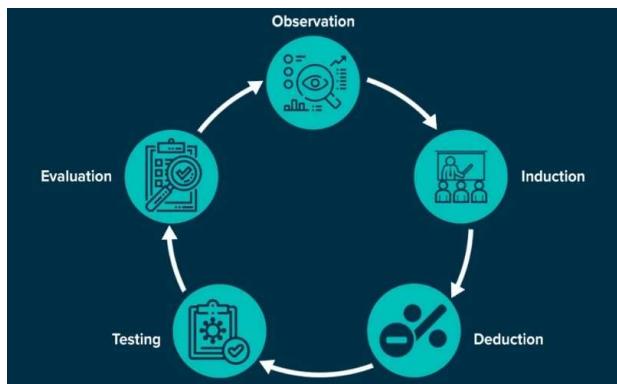


Empirical research in management and economics

Multiple regression

Thorsten Pachur

Technical University of Munich
School of Management
Chair of Behavioral Research Methods

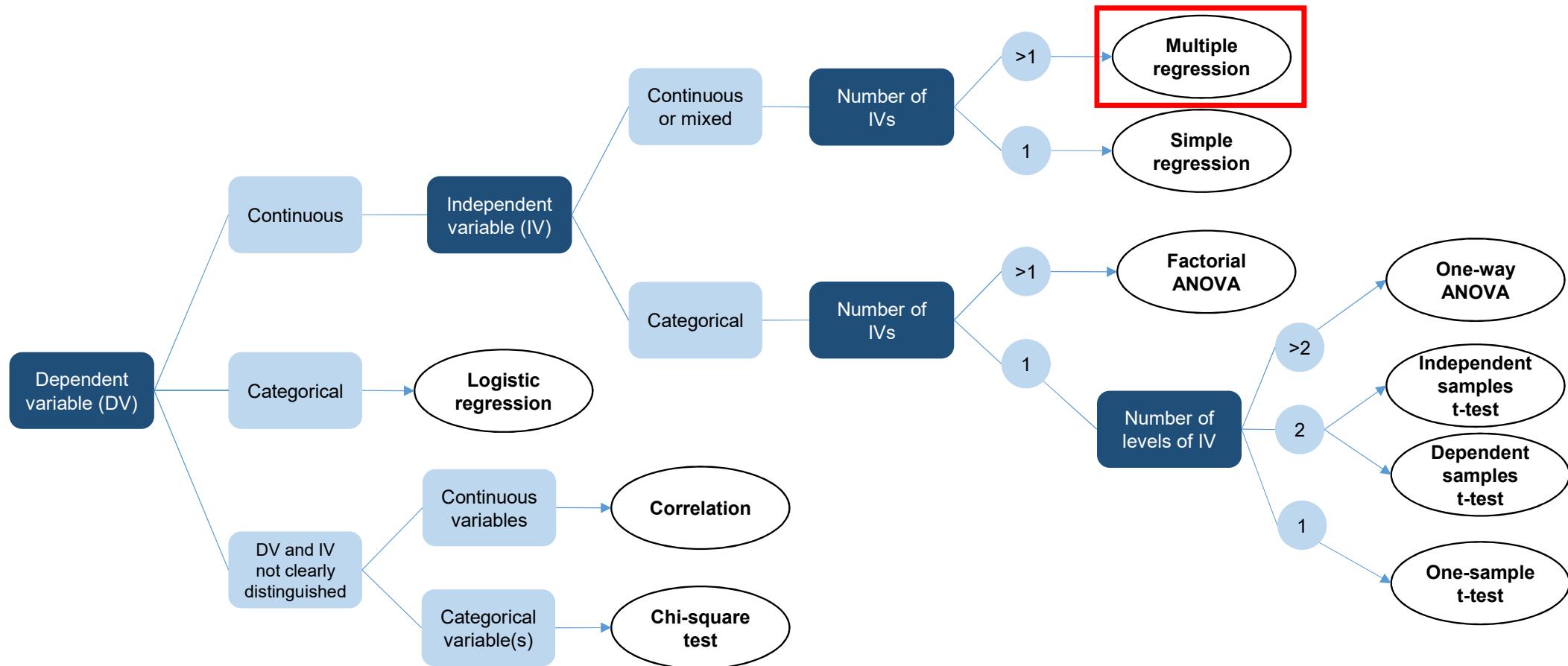


Recap from last week

- What are the key purposes of estimating a regression model?
- What are the key parameters of a regression model?
- How are the parameters of a regression model estimated?
- Why can it be helpful to center a predictor?
- How is a regression model evaluated statistically—both in terms of the overall model fit and in terms of the regression coefficients?
- What are key assumptions in simple linear regression—and how can you check whether the assumptions are fulfilled?

Agenda for the semester

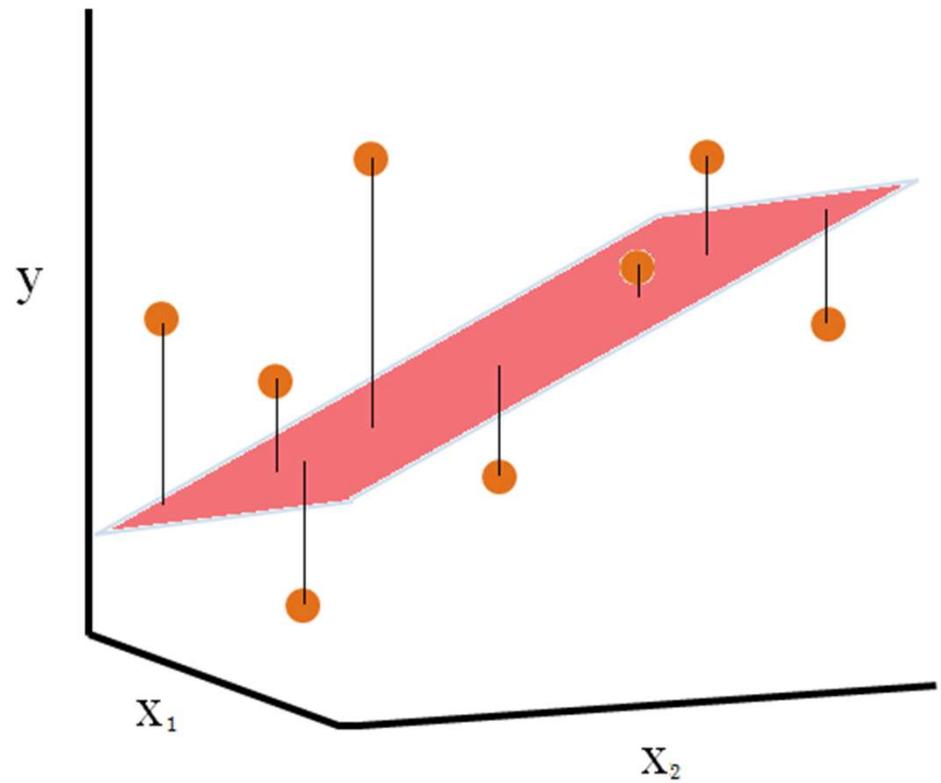
Session	Date	Topic
1	13 October	Introduction
2	20 October	Descriptive data analysis
3	27 October	Hypothesis development and measurement
4	3 November	Inferential data analysis I
5	10 November	Inferential data analysis II
6	17 November	Simple regression
7	24 November	Multiple regression
8	1 December	Logistic regression
9	8 December	Factor analysis
10	15 December	Cluster analysis
11	12 January	Conjoint analysis
12	19 January	The replication crisis and open science
13	26 January	Summary and questions
	11 February	Exam



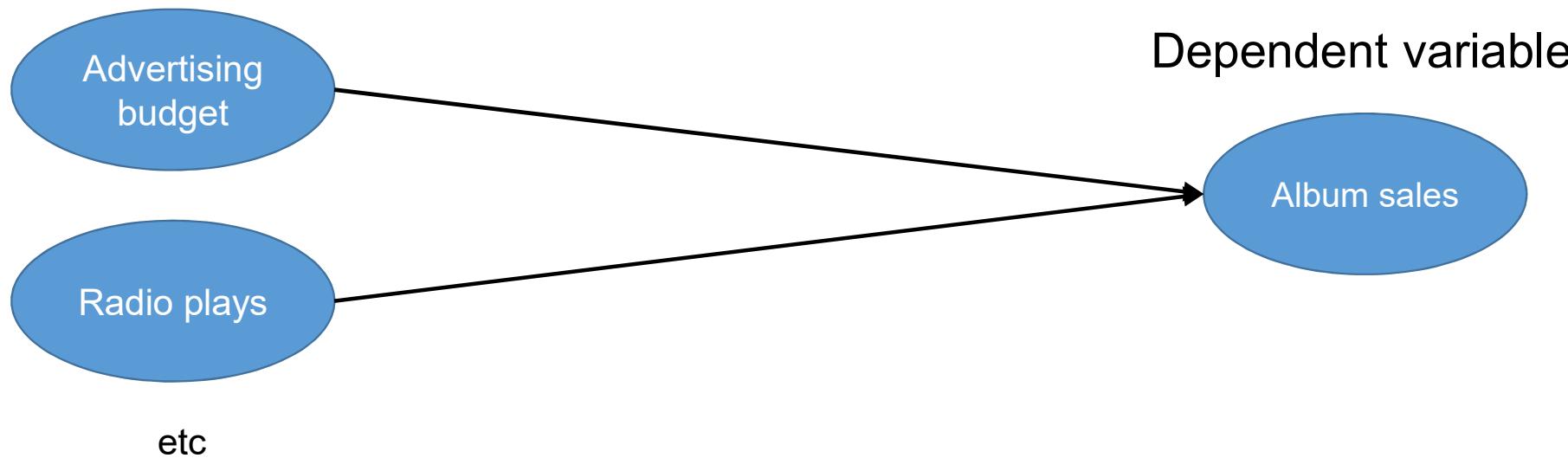
Goals for this week

- You know the equation of a multiple regression model
- You know how to evaluate a multiple regression model statistically
- You know what is meant by multicollinearity and how to test for it
- You are familiar with how to do a power analysis for a multiple regression analysis
- You can conduct a moderation analysis and a mediation analysis
- You are familiar with dummy coding and how it is used to include a categorical predictor in a regression model

Multiple regression

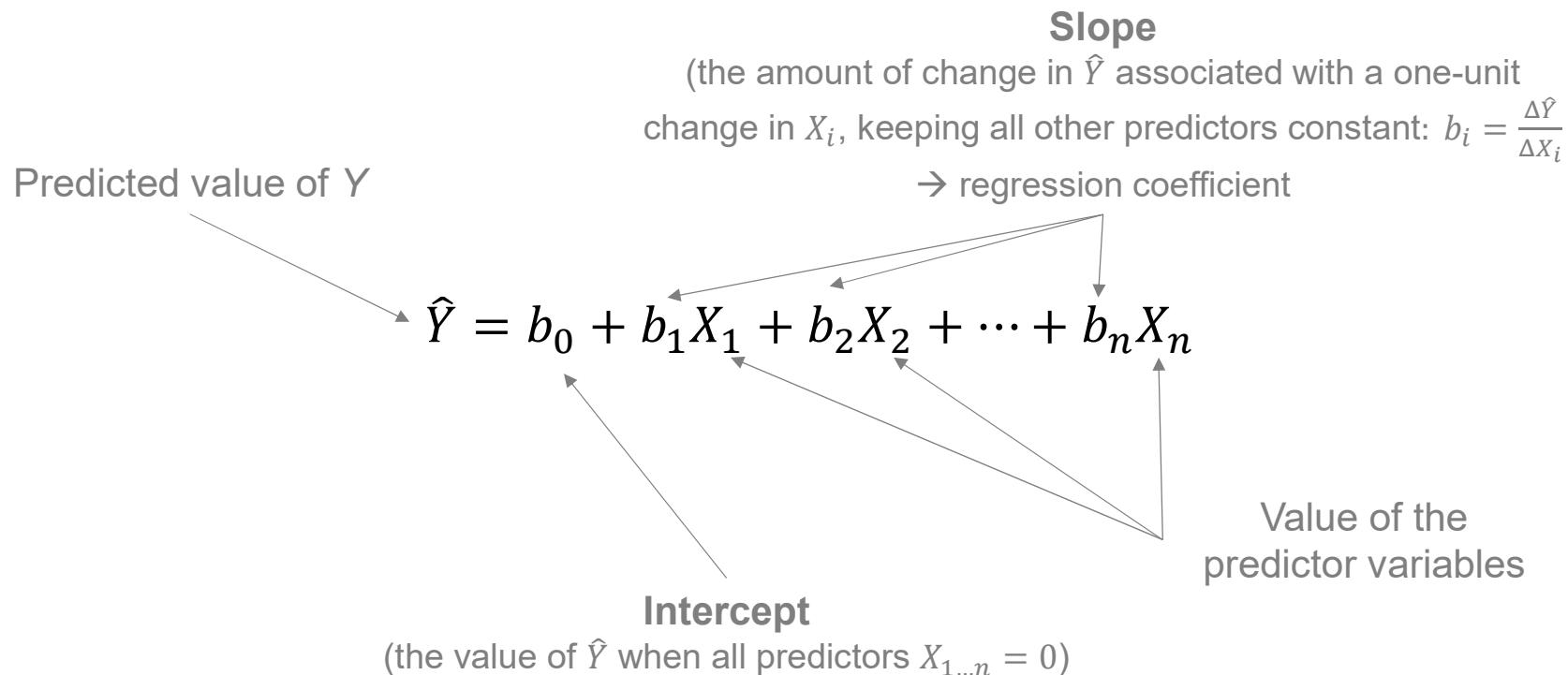


Independent variables



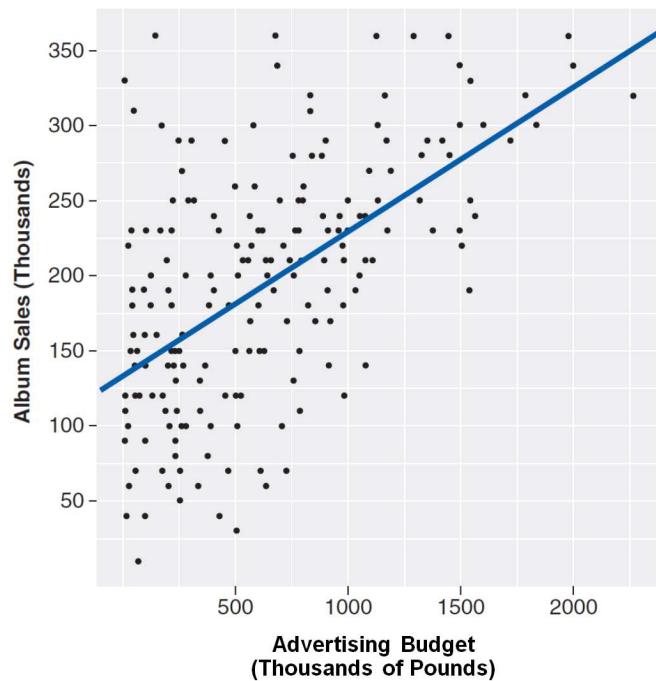
Dependent variable

Multiple regression equation

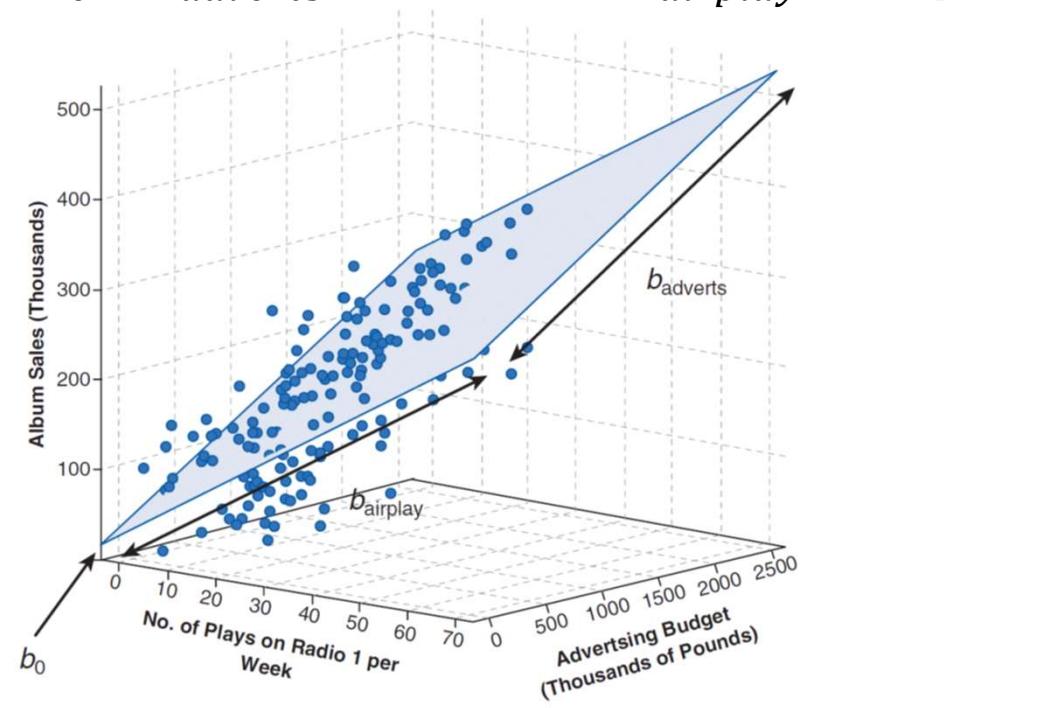


Geometric representation

$$\widehat{\text{Sales}} = b_0 + b_{adverts} \times \text{Adverts}$$

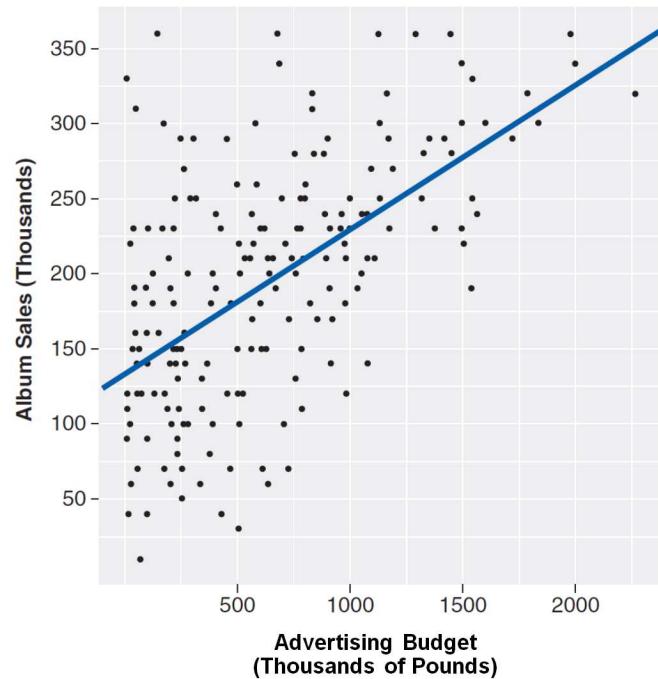


$$\widehat{\text{Sales}} = b_0 + b_{adverts} \times \text{Adverts} + b_{airplay} \times \text{Airplay}$$

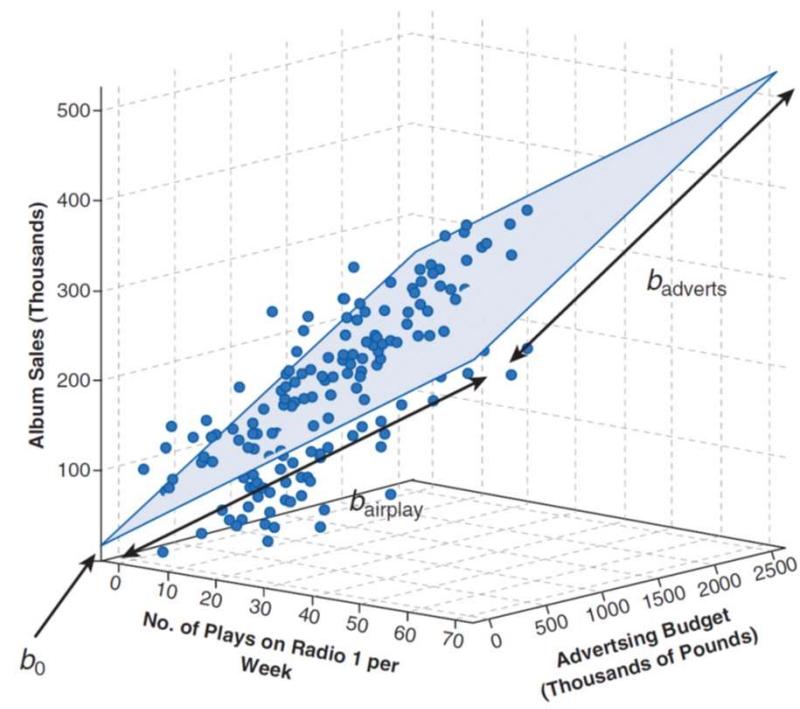


Geometric representation

$$\widehat{Sales} = 134.1 + 0.096 \times Adverts$$



$$\widehat{Sales} = 41.1 + 0.087 \times Adverts + 3.59 \times Airplay$$



Standardized regression coefficients

→ Allows for a comparison of regression coefficients between predictors

$$\rightarrow \beta_i = b_i \times \frac{SD_{X_i}}{SD_Y}$$

$$\widehat{Sales} = 41.1 + 0.087 \times Adverts + 3.59 \times Airplay$$

$$\beta_{adverts} = 0.087 \times \frac{485.7}{80.7} = .523$$

$$\beta_{airplay} = 3.59 \times \frac{12.3}{80.7} = .546$$

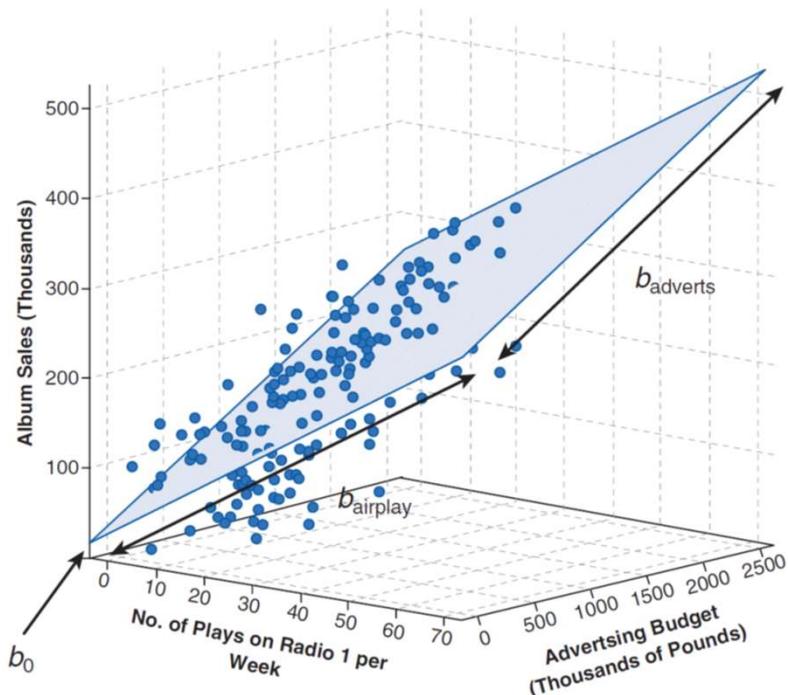
$$\rightarrow z(\widehat{Sales}) = 0 + 0.523 \times z(Adverts) + 0.546 \times z(Airplay)$$

↑
Intercept!

Interpretation of standardized regression coefficients:
changes in terms of standard deviations in z-transformed data

$$SD_{adverts} = 485.7$$
$$SD_{airplay} = 12.3$$
$$SD_{sales} = 80.7$$

Statistical evaluation of a regression model



- Evaluating the goodness of fit
 - How much variance in the outcome variable is accounted for by the predictors?
 - Does the model perform better than the baseline model ($\hat{Y}_i = \bar{Y}$)?
- Do the regression coefficients (bs) differ significantly from zero?

Statistical evaluation of a regression model

- Evaluating the fit of the regression model

- Amount of explained variance

$$R^2 = \frac{\sum_{i=1}^N (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^N (Y_i - \bar{Y})^2} = \frac{SS_{\hat{Y}}}{SS_Y}$$

$$R^2 = \frac{815,524.1}{1,295,952} = .629$$

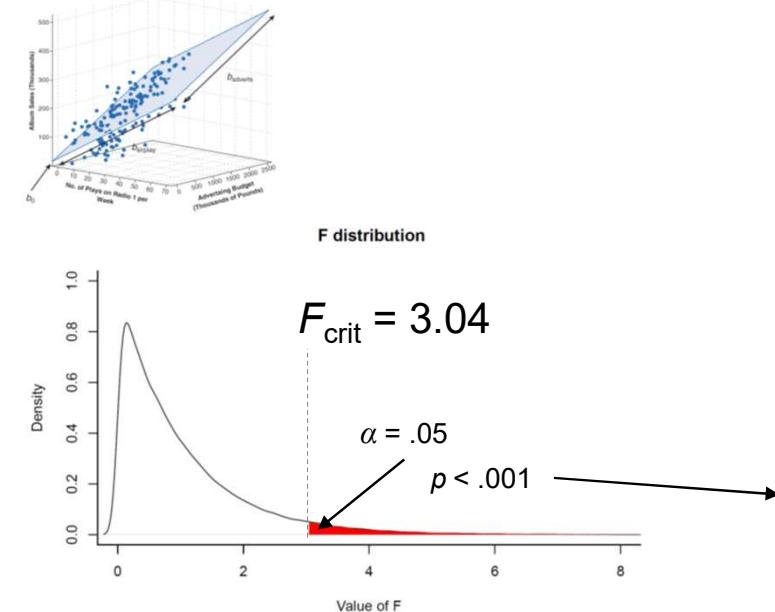
- F -statistic

$$F = \frac{(N - k - 1)R^2}{k(1 - R^2)}$$

k = number of predictors in the model

$$F = 167.2$$

$df_1 = k$ $df_2 = N-k-1$



- Evaluating the individual regression coefficients b : t -statistic

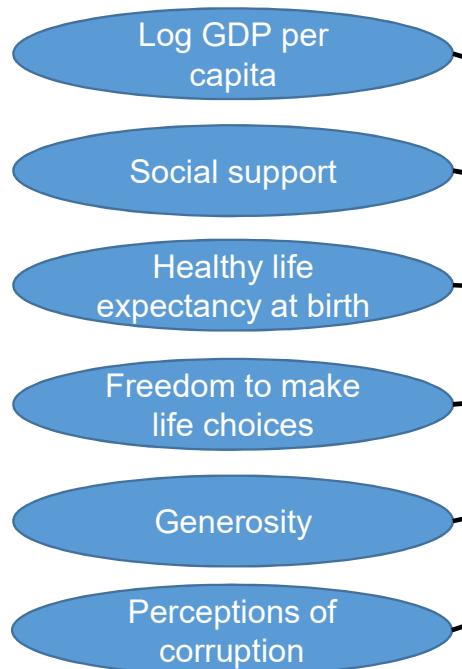
$$b_{advert} = .087 \quad t = 11.087 \quad p < .001 \quad b_{aisplay} = 3.59 \quad t = 12.51 \quad p < .001$$

Assumptions in multiple regression

- *Linearity*: The relationship between outcome variable and the predictor variables is linear
- *Homoscedasticity*: At each level of the predictor variable, the variance of the residuals is the same
- The residuals are *normally distributed*
- Absence of (multi)collinearity
 - Correlations among predictors should not be too large ($\sim r < .8$)
 - If there is multicollinearity, the estimated regression coefficients of the intercorrelated predictors are unstable (i.e., it is difficult to assess the importance of an individual predictor) and their standard errors large

Example: World happiness

Independent variables



Dependent variable

Checking for multicollinearity

Intercorrelations (Pearson correlations): Problematic when $r > .8$

	Log GDP per capita	Social support	Healthy life expectancy at birth	Freedom to make life choices	Generosity	Perceptions of corruption
Log GDP per capita	—					
Social support	0.753	—				
Healthy life expectancy at birth	0.857	0.720	—			
Freedom to make life choices	0.326	0.427	0.335	—		
Generosity	-0.008	0.088	0.015	0.320	—	
Perceptions of corruption	-0.408	-0.322	-0.368	-0.451	-0.398	—

Checking for multicollinearity

- Check intercorrelations among predictors
- Tolerance ($= 1 - R_{X_i}^2$; $R_{X_i}^2$ is the correlation of X_i with all other predictors)
 - Degree to which a given predictor can be predicted by the other predictors
- Guideline*
 - Tolerance below 0.1 indicates that there is a serious problem
 - Tolerance below 0.2 indicates that there is a potential problem
- Variance inflation factor (VIF; $= 1/\text{tolerance}$)

Guideline

- The largest VIF should not be greater than 10
- The average VIF should not be substantially greater than 1

If there is multicollinearity

- Consider dropping redundant predictors
- Combine highly correlated predictors with factor analysis

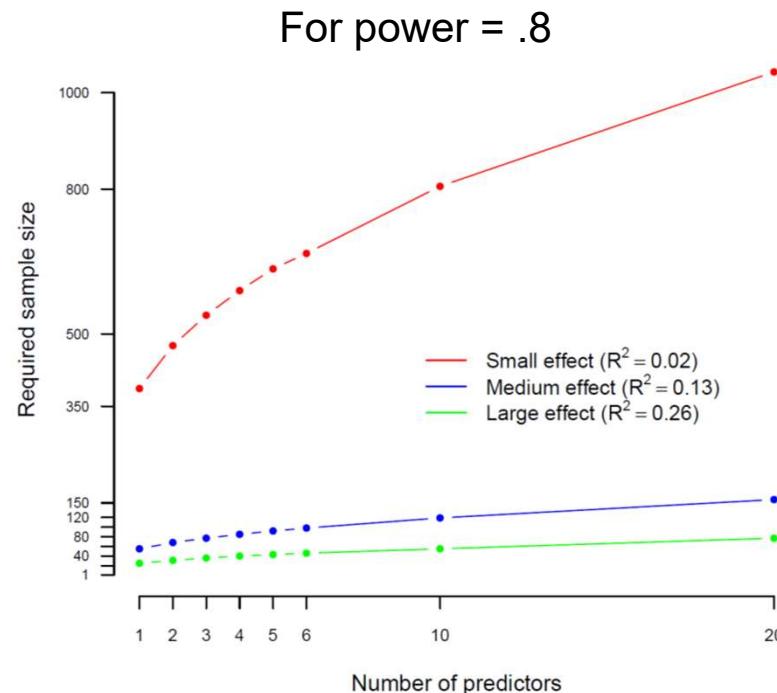
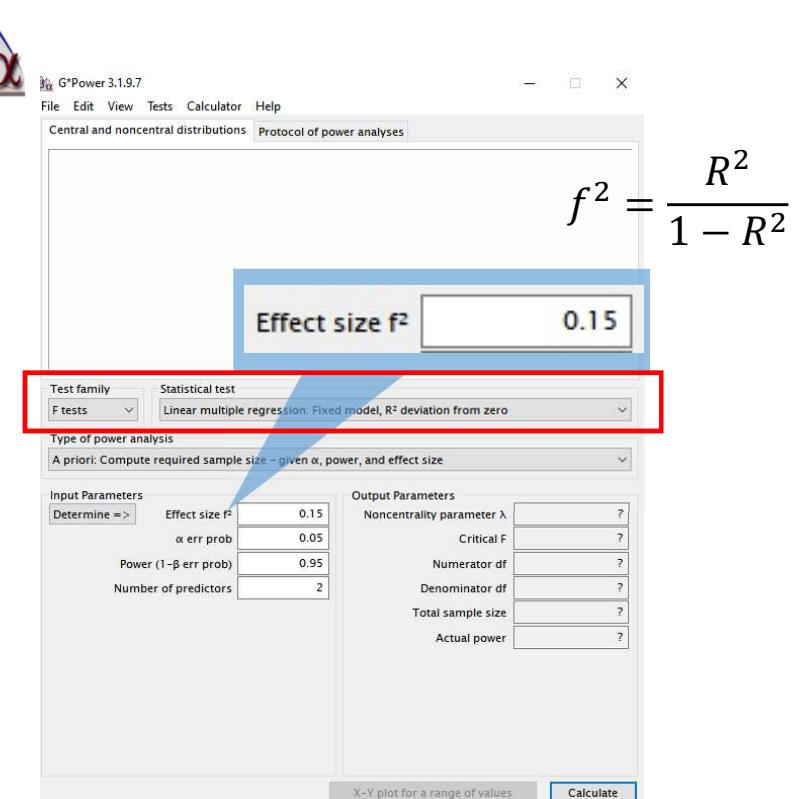
!

Multicollinearity statistics

	Tolerance	VIF
Log GDP per capita	0.177	5.656
Social support	0.366	2.733
Healthy life expectancy at birth	0.230	4.347
Freedom to make life choices	0.684	1.462
Generosity	0.766	1.305
Perceptions of corruption	0.608	1.644

Sample-size considerations

Do power analysis (e.g., with G*Power)



*Applying and Extending
Multiple Regression*

Moderation analysis



Does the effect of weight (i.e., the independent variable) on height (i.e., the dependent variable) differ between males and females (i.e., the moderator)?

→ Tested by including the independent variable, the moderator, **and their interaction** as predictors

$$\hat{Y} = b_0 + \underbrace{b_1 \times X_1}_{\text{Independent variable}} + \underbrace{b_2 \times X_2}_{\text{Moderator variable}} + \boxed{b_3 \times X_1 \times X_2}$$

Interaction between independent variable and moderator

Moderation analysis

$$\widehat{Height} = b_0 + b_{Weight} \times Weight + b_{Sex} \times Sex + b_{Weight \times Sex} \times Weight \times Sex$$

1 = female
0 = male

Interaction term

Coefficients

Model	Unstandardized	Standard Error	Standardized	t	p
(Intercept)	115.987	0.490		236.724	< .001
Weight	0.700	0.006	1.042	121.786	< .001
Sex	4.277	0.615		6.954	< .001
Weight × Sex	-0.025	0.008		-3.036	0.002

Interpretation of the regression coefficient for the interaction term

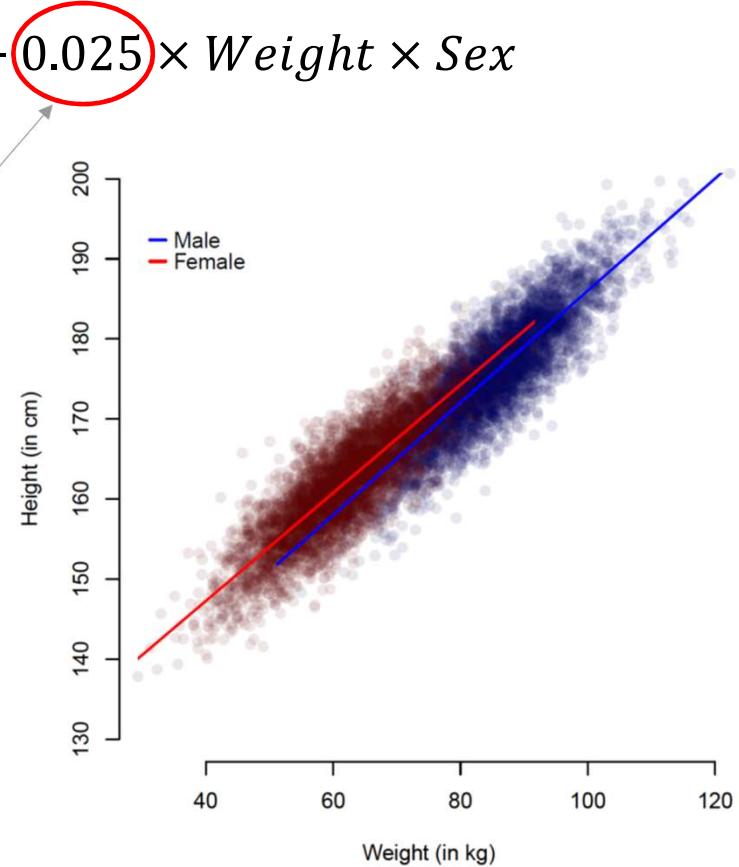
$$\widehat{Height} = 115.987 + 0.700 \times Weight + 4.277 \times Sex - 0.025 \times Weight \times Sex$$

$$\widehat{Height}_{male} = 115.987 + 0.700 \times Weight$$

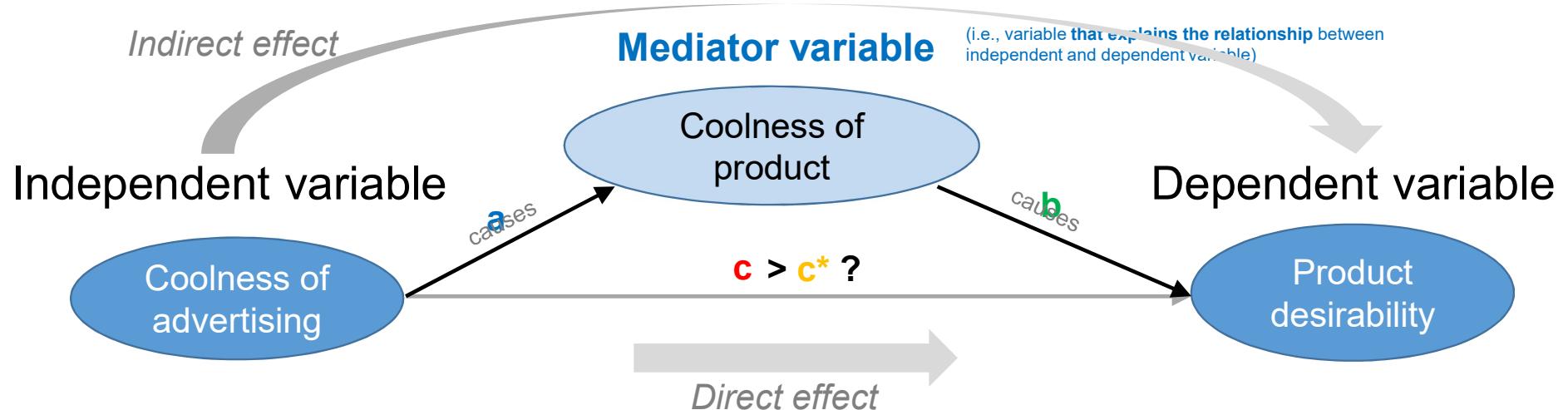
$$\widehat{Height}_{female} = 120.263 + 0.675 \times Weight$$

$$0.700 - 0.675 = 0.025$$

1 = female
0 = male



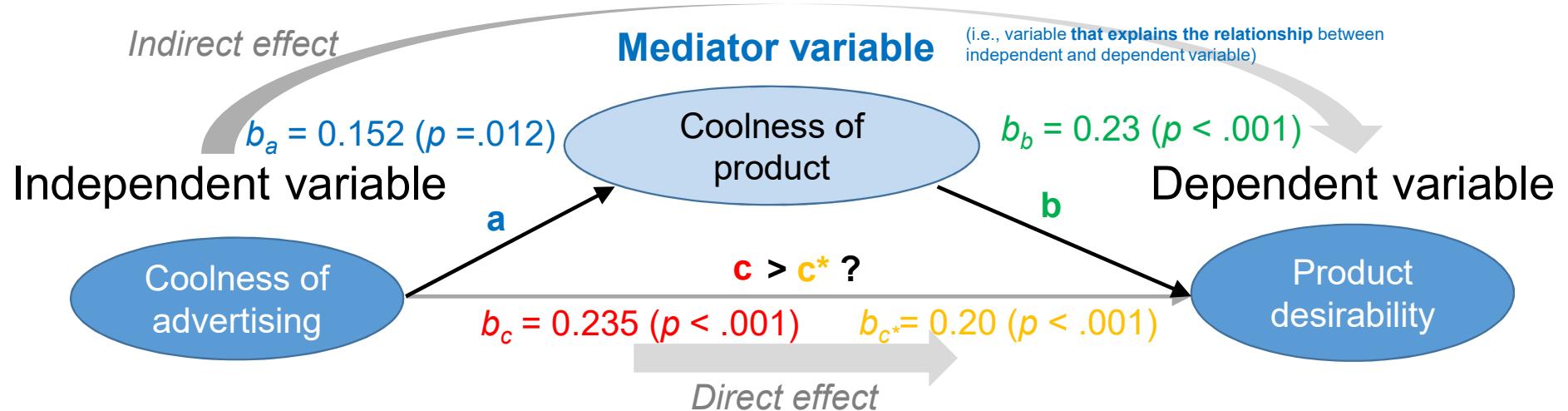
Mediation analysis



- Three conditions
 - 1) Is there a significant relationship between independent and dependent variable (**c**)?
 - 2) Is there a significant relationship between independent variable and mediator (**a**)?
 - 3) Is there a significant relationship between mediator and dependent variable (**b**), controlling for the independent variable?
- Is path from IV to DV reduced when mediator and IV are used simultaneously to predict the DV (**c***)?
- Statistical test: Is the indirect effect (path **a** \times **b**) reliably different from zero?

Baron & Kenny (1986)

Mediation analysis



Three regression models

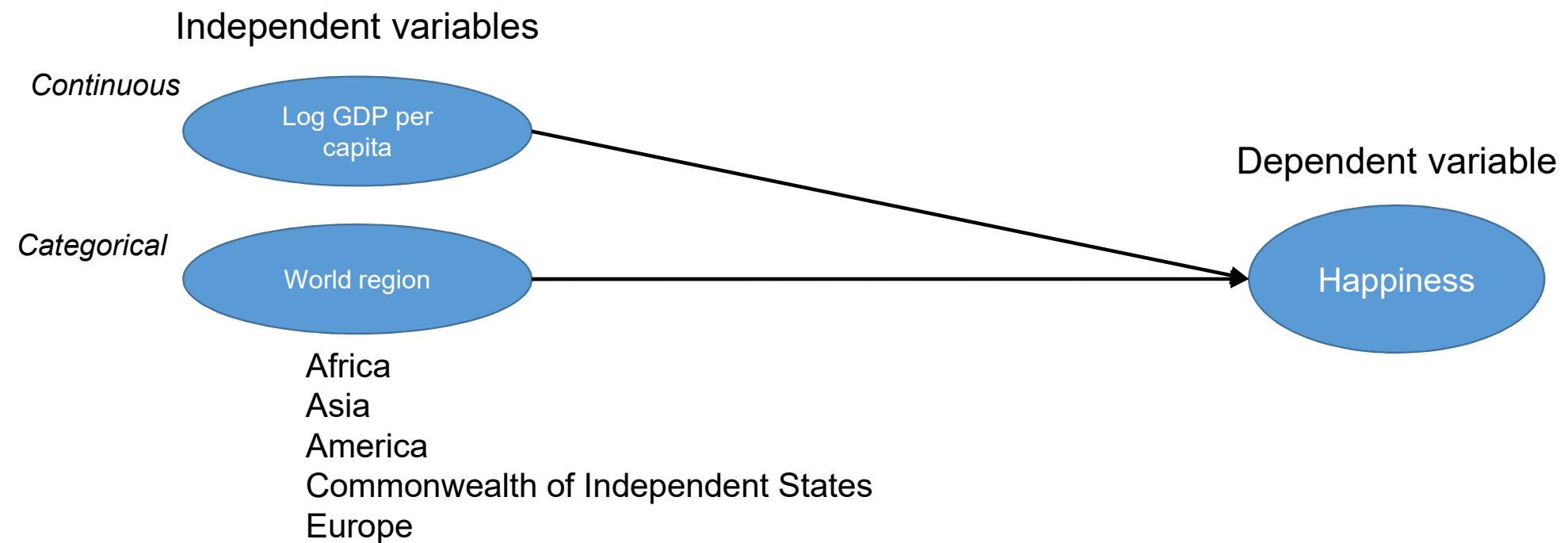
- $\hat{Y} = b_0 + b_c X$
- $\hat{M} = b_0 + b_a X$
- $\hat{Y} = b_0 + b_{c^*} X + b_b M$

Statistical evaluation of the indirect path ($a \times b$)

$$a \times b = 0.035, CI_{95\%} = [0.002, 0.068], p = .038$$

Baron & Kenny (1986)

Multiple regression with a categorical predictor



Using a categorical predictor: Dummy coding

Procedure

- If there are k categories, create $k-1$ dummy variables
- Choose a reference category (e.g., Europe), to which all other categories are compared. For this category, set all dummy variables to 0.
- For each of the other categories, set one dummy variable to 1 and the others to 0.

	Dummy variable 1	Dummy variable 2
Africa	1	0
Asia	0	1
America	0	0
Independent	0	0
Europe	0	0

	country	Happiness	Region indicator	Dummy1	Dummy2	Dummy3	Dummy4	
1	Afghanistan	2.66171813	Asia	0	1	0	0	0.4
2	Albania	4.639548302	Europe	0	0	0	0	0.6
3	Algeria	5.248912334	Africa	1	0	0	0	0.8
4	Argentina	6.039330006	America	0	0	1	0	0.9
5	Armenia	4.287736416	Commonwealth of Independent States	0	0	0	1	0.6
6	Australia	7.25703764	America	0	0	1	0	0.9
7	Austria	7.299727875	Europe	0	0	0	0	0.9
8	Azerbaijan	5.152279377	Commonwealth of Independent States	0	0	0	1	0.7
9	Bahrain	6.227320671	Africa	1	0	0	0	0.8
10	Bangladesh	4.309771061	Asia	0	1	0	0	0.7
11	Belarus	5.552915096	Commonwealth of Independent States	0	0	0	1	0.9
12	Belgium	6.926347588	Europe	0	0	0	0	0.9
13	Benin	4.853180885	Africa	1	0	0	0	0.4
14	Bolivia	5.65055275	America	0	0	1	0	0.7
15	Bosnia and Herzegovina	5.089902401	Europe	0	0	0	0	0.7
16	Botswana	3.504881144	Africa	1	0	0	0	0.7
17	Brazil	6.332929134	America	0	0	1	0	0.9
18	Bulgaria	5.096901894	Europe	0	0	0	0	0.9
19	Burkina Faso	4.646891117	Africa	1	0	0	0	0.7
20	Cambodia	4.585842133	Asia	0	1	0	0	0.7
21	Cameroon	5.07405138	Africa	1	0	0	0	0.6
22	Central African Republic	3.475862026	Africa	1	0	0	0	0.3
23	Chad	4.558937073	Africa	1	0	0	0	0.6
24	Chile	6.320119381	America	0	0	1	0	0.8
25	China	5.099061489	Asia	0	1	0	0	0.7
26	Colombia	6.157341957	America	0	0	1	0	0.9
27	Congo (Brazzaville)	4.883991241	Africa	1	0	0	0	0.6
28	Congo (Kinshasa)	4.311033249	Africa	1	0	0	0	0.6
29	Costa Rica	7.22518158	America	0	0	1	0	0.9
30	Croatia	5.343165874	Europe	0	0	0	0	0.7

Multiple regression with a dummy-coded predictor

$$\widehat{\text{Happiness}} = b_0 + b_1 \text{Dummy}_1 + b_2 \text{Dummy}_2 + b_3 \text{Dummy}_3 + b_4 \text{Dummy}_4$$

	Dummy Variable 1	Dummy Variable 2	Dummy Variable 3	Dummy Variable 4
Africa	1	0	0	0
Asia	0	1	0	0
America	0	0	1	0
Independent	0	0	0	1
Europe	0	0	0	0

Average happiness in reference category

Deviations from average in reference category

Model		Unstandardized	Standard Error	Standardized ^a	t	p
		(Intercept)				
H ₁	(Intercept)	6.378	0.141		45.102	< .001
	Dummy1 (1)	-1.667	0.187		-8.935	< .001
	Dummy2 (1)	-1.308	0.239		-5.479	< .001
	Dummy3 (1)	-0.158	0.232		-0.684	0.495
	Dummy4 (1)	-1.074	0.286		-3.758	< .001

^a Standardized coefficients can only be computed for continuous predictors.

Self-quiz questions

- Why can the regression coefficient for a predictor in a multiple regression differ from the regression coefficient in a simple regression?
- How can a multiple regression analysis be evaluated statistically (overall model fit, regression coefficients)?
- What is multicollinearity, when is it a problem, and how can one test for it?
- What aspects are relevant for a power analysis for multiple regression?
- How do you test whether a variable acts as a moderator in the relationship between two other variables?
- What are the steps of a mediation analysis?
- What is dummy coding and how it is used to include a categorical predictor in a regression model?

Background readings for next week

Backhaus, K., Erichson, B., Gensler, S., Weiber, R., & Weiber, T. (2021). Logistic regression. In K. Backhaus, B. Erichson, S. Gensler, R. Weiber, & T. Weiber, *Multivariate analysis: An application-oriented introduction* (p. 267-354). Springer.

